[1]李祥高,吴宪,王世荣.印刷电子技术在生物传感器中的应用[J].中国材料进展,2014,(3):029-36.[doi:10.7502/j.issn.1674-3962.2014.03.05]
 WU Xian,LI Xianggao,WANG Shirong.Application of Printing Electronic Technology in Biosensor[J].MATERIALS CHINA,2014,(3):029-36.[doi:10.7502/j.issn.1674-3962.2014.03.05]
点击复制

印刷电子技术在生物传感器中的应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第3期
页码:
029-36
栏目:
特约研究论文
出版日期:
2014-03-30

文章信息/Info

Title:
Application of Printing Electronic Technology in Biosensor
作者:
李祥高吴宪王世荣
天津大学 化工学院,天津 300072
Author(s):
WU Xian LI Xianggao WANG Shirong
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
关键词:
印刷电子生物传感器导电油墨丝网印刷
DOI:
10.7502/j.issn.1674-3962.2014.03.05
文献标志码:
A
摘要:
生物传感技术是生物学、化学、物理学和信息科学等的交叉学科,已发展成为一个十分活跃的研究领域。生物传感器经过半个世纪的发展,开始在医学、制药、环境监测、国防和安全等许多领域得到应用。印刷电子技术是将现代印刷技术与微电子技术相结合来制造电子器件的前沿技术,是实现大批量制备生物传感器的最佳方法之一。本文介绍了生物传感器的研究历程以及器件的结构、类型及传感机理,重点总结了应用于不同生物传感器的纳米导电材料、介体物质、印刷油墨和作用原理的研究进展,以及丝网印刷、喷墨打印、微接触印刷和卷对卷印刷等技术在制作生物传感器方面各自的优势和特点。
Abstract:
Biological sensing technology has become a very active research field because it is a new interdiscipline about biology, chemistry, physics and information science and technology. Biosensor has been widely used in many areas such as medical science, pharmacy, environmental monitoring, defense and security after half a century of development. Printedelectronic technology is a frontier technology of the hybrid of modern printing technology and microelectronic technique, and is one of the best manners to fabricate biological sensors in industry scale. In this paper, the research progress of biosensor and its structure, type and sensing mechanism is introduced, the electrically conductive nano-materials, mediators, printing ink and action principle are summarized in different biosensors, the especially the application advantages and characteristics of screen printing, ink-jet printing, micro-contact printing and roll-to-roll printing in the preparation of biosensors.

参考文献/References:

[1] Ahmet K, Esma A, Yeliz K. Biosensors and Their Principles [EB/OL]. (2008)[2014].www.intechopen.com.

[2] Iqbal M A, Gupta S G, Hussaini S S. A Review on Electrochemical Biosensors: Principles and Applications[J]. Advances in Bioresearch ,2012, 3(4):158-164.

[3] Anthony P.F.T. Biosensors: sense and sensibility [J]. Chemical Society Reviews, 2013,42:3184-3196.

[4] Setti L, Fraleoni-Morgera A, Ballarin B, et al. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing [J]. Biosensors and Bioelectronics, 2005, 20(10): 2019-2026.

[5] Liu H C, Tsai C C, Wang G J. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode [J]. Nanotechnology 2013, 24(21): 215101.

[6] Nasri Z, Shams E. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt [J]. Electrochimica Acta, 2013, 112: 640-647.

[7] Tang H, Yan F, Lin P, et al. Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials [J]. Advanced Functional Materials, 2011, 21(12): 2264-2272.

[8] Chappell P H. Making sense of artificial hands [J]. J Med Eng Technol, 2011, 35(1): 1-18.

[9] Camacho C, Matías J C, Chico B, et al. Amperometric Biosensor for Hydrogen Peroxide, Using Supramolecularly Immobilized Horseradish Peroxidase on the β-Cyclodextrin-Coated Gold Electrode [J]. Electroanalysis, 2007, 19(24): 2538-2542.

[10] Hideshima S, Hinou H, Ebihara D, et al. Attomolar Detection of Influenza A Virus Hemagglutinin Human H1 and Avian H5 Using Glycan-Blotted Field Effect Transistor Biosensor [J]. Analytical Chemistry, 2013, 85(12): 5641-5644.

[11] Keow C M, Bakar F A, Salleh A B, et al. Screen-printed histamine biosensors fabricated from the entrapment of diamine oxidase in a photocured poly (HEMA) film [J]. Int J Electrochem Sci, 2012, 7: 4702--4715.

[12] Piermarini S, Volpe G, Esti, M, et al. Real time monitoring of alcoholic fermentation with low-cost amperometric biosensors [J]. Food Chemistry, 2011, 127(2): 749-754.

[13] Lee S, Fang H, Chen W. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture [J]. Sensors and Actuators B: Chemical, 2006, 117(1): 236-243.

[14] Ohfuji K, Sato N, Hamada-Sato N, et al. Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa [J]. Biosensors and Bioelectronics, 2004, 19(10): 1237-1244.

[15] Pemberton R M, Cox T, Tuffin R, et al. Microfabricated glucose biosensor for culture well operation [J]. Biosensors and Bioelectronics, 2013, 42: 668-677.

[16] Albanese D, Matteo D M, Alessio C. Screen printed biosensors for detection of nitrates in drinking water [J]. Computer Aided Chemical Engineering, 2010, 28: 283-288.

[17] Wcis?o M, Compagnone D, Trojanowicz M. Enantioselective screen-printed amperometric biosensor for the determination of [J] d-amino acids. Bioelectrochemistry, 2007, 71(1): 91-98.

[18] Román L D T, Alonso-Lomillo M A, Domínguez-Renedo O, et al. GADH screen-printed biosensor for gluconic acid determination in wine samples [J]. Sensors and Actuators B: Chemical, 2014, 192: 56-59.

[19] Hirst N A, Hazelwood L D, Jayne D G, et al. An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly(ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis [J]. Sensors and Actuators B: Chemical, 2013, 186: 674-680.

[20] Chen P, Peng Y, He M, et al. Sensitive Electrochemical Detection of Creatinine at Disposable Screen-Printed Carbon Electrode Mixed with Ferrocenemethanol [J]. International Journal of Electrochemical Science, 2013, 8:8931-8939.

[21] Liu S, Guo X. Carbon nanomaterials field-effect-transistor-based biosensors [J]. NPG Asia Materials, 2012, 4(8): e23.

[22] Ilkhani H, Arvand M, Ganjali M R, et al. Nanostructured Screen Printed Graphite Electrode for the Development of a Novel Electrochemical Genosensor [J]. Electroanalysis, 2013, 25(2): 507-514.

[23] Yang X, Xiao F B, Lin H W, et al. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode [J]. Electrochimica Acta, 2013, 109: 750-755.

[24] Queirós R B, Guedes A, Marques P V S, et al. Recycling old screen-printed electrodes with newly designed plastic antibodies on the wall of carbon nanotubes as sensory element for in situ detection of bacterial toxins in water [J]. Sensors and Actuators B: Chemical, 2013, 189: 21-29.

[25] Alvarado-Gámez A L, Alonso-Lomillo M A, Domínguez-Renedo O, et al. Vanadium determination in water using alkaline phosphatase based screen-printed carbon electrodes modified with gold nanoparticles [J]. Journal of Electroanalytical Chemistry, 2013, 693: 51-55.

[26] Ahmad R, Vaseem M, Tripathy N, et al. Wide Linear-Range Detecting Nonenzymatic Glucose Biosensor Based on CuO Nanoparticles Inkjet-Printed on Electrodes [J]. Analytical Chemistry, 2013, 85(21): 10448-10454.

[27] Ekabutr P, Chailapakul O, Supaphol P. Modification of disposable screen-printed carbon electrode surfaces with conductive electrospun nanofibers for biosensor applications [J]. Journal of Applied Polymer Science, 2013,3885-3893.

[28] Phongphut A, Sriprachuabwong C, Wisitsoraat A, et al. A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination [J]. Sensors and Actuators B: Chemical, 2013, 178: 501-507.

[29] Karuwan C, Sriprachuabwong C, Wisitsoraat A, et al. Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol [J]. Sensors and Actuators B: Chemical, 2012, 161(1): 549-555.

[30] Phongphut A, Sriprachuabwong C, Wisitsoraat A, et al. A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination [J]. Sensors and Actuators B: Chemical, 2013, 178: 501-507.

[31] Wagner M, Lisak G, Ivaska A, et al. Durable PEDOT:PSS films obtained from modified water-based inks for electrochemical sensors. Sensors and Actuators B: Chemical, 2013, 181: 694-701.

[32] Longinotti G, Lloret P, Ybarra G, et al. Screen-printed electrochemical biosensors based on magnetic core-shell nanoparticles[EB/OL].(2008)[ 2014].www.google.com.

[33] Bettazzi F, Enayati L, Sánchez I C, et al. Electrochemical bioassay for the detection of TNF-α using magnetic beads and disposable screen-printed array of electrodes [J]. Bioanalysis, 2013, 5(1): 11-19.

[34] Ricci F, Amine A, Palleschi G, et al. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability [J]. Biosens Bioelectron, 2003, 18(2-3): 165-74.

[35] Lee D H, Choi J S, Chae H, et al. Screen-printed white OLED based on polystyrene as a host polymer [J]. Current Applied Physics, 2009, 9(1): 161-164.

[36] Tudorache M, Bala C. Biosensors based on screen-printing technology, and their applications in environmental and food analysis [J]. Analytical and Bioanalytical Chemistry, 2007, 388(3): 565-578.

[37] Mónica H C, Carlos A G V, Giaan A A R, Hern A N C, etal .Behavior of Two and Three Electrode Configuration and Different Mediators in Working Electrode on Development of Disposable Screen-Printing Biosensors for Determination of Free Cholesterol[J]. Chem.Soc.2013,57(1):47-53.

[38] Liao C, Yan F. Organic Semiconductors in Organic Thin-Film Transistor-Based Chemical and Biological Sensors [J]. Polymer Reviews, 2013, 53(3): 352-406.

[39] Komuro N, Takaki S, Suzuki K, et al. Inkjet printed (bio)chemical sensing devices [J]. Analytical and Bioanalytical Chemistry, 2013, 405(17): 5785-5805.

[40] Ihalainen P, Majumdar H, Viitala T, et al. Application of Paper-Supported Printed Gold Electrodes for Impedimetric Immunosensor Development [J]. Biosensors, 2013, 3(1): 1-17.

[41] Weng B, Morrin A, Shepherd R, et al. Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate [J]. Journal of Materials Chemistry B, 2014, 2(7): 793.

[42] Gonzalez-Macia L, Morrin A, Smyth M R, et al. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices [J]. Analyst, 2010, 135(5): 845-867.

[43] Volcke C, Gandhiraman R P, Basabe-Desmonts L, et al. Protein pattern transfer for biosensor applications [J]. Biosensors and Bioelectronics, 2010, 25(6): 1295-1300.

[44] Salomon S, Leichle T, Dezest D, et al. Arrays of nanoelectromechanical biosensors functionalized by microcontact printing [J]. Nanotechnology, 2012, 23(49): 1-8.

[45] Yerushalmi R, Jacobson Z A, Ho J C, et al. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing [J]. Applied Physics Letters, 2007, 91(20): 1-4.

[46] Reddy A S G, Narakathu B B, Atashbar M Z, et al. Gravure Printed Electrochemical Biosensor [J]. Procedia Engineering, 2011, 25: 956-959.

[47] Chappell P H. Making sense of artificial hands [J]. J Med Eng Technol, 2011, 35(1): 1-18.


更新日期/Last Update: 2014-02-27