[1]郑立荣、仇志军、游胤涛、刘志英、杨庚、谢丽、邹卓、冯艺、邵波涛、詹义强、梅永丰、刘冉.柔性大面积印刷电子新器件及其物联网应用[J].中国材料进展,2014,(3):007-15.[doi:10.7502/j.issn.1674-3962.2014.03.02]
 Lirong Zheng,Zhijun Qiu,Yintao You,et al.Flexible Large Area Printed Electronics for the Internet-of-Things Applications[J].MATERIALS CHINA,2014,(3):007-15.[doi:10.7502/j.issn.1674-3962.2014.03.02]
点击复制

柔性大面积印刷电子新器件及其物联网应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第3期
页码:
007-15
栏目:
特约研究论文
出版日期:
2014-03-30

文章信息/Info

Title:
Flexible Large Area Printed Electronics for the Internet-of-Things Applications
作者:
郑立荣、仇志军、游胤涛、刘志英、杨庚、谢丽、邹卓、冯艺、邵波涛、詹义强、梅永丰、刘冉
复旦大学柔性微纳电子与系统研究中心,复旦大学信息科学与工程学院,上海 200433
Author(s):
Lirong Zheng Zhijun Qiu Yintao You Zhiying Liu Geng Yang Li XieZhuo Zou Yi Feng Botao ShaoYiqiang Zhan Yongfeng Mei and Ran Liu
Center for Flexible Micro and Nano-Systems, School of Information Science and Engineering, Fudan University, Shanghai 200433, China)
关键词:
物联网柔性电子大面积电子印刷电子系统与集成
DOI:
10.7502/j.issn.1674-3962.2014.03.02
文献标志码:
A
摘要:
作为一项新兴技术,物联网通过各种传感器和智能标准通信接口,使得物理世界的“物”与信息网络的“云”无缝链接,从而实现对物品对象的标识和智能管理。由于柔性电子特有的弯曲性和可延展性,使其在与物的结合中发挥出重要的作用,成为桥接“物”与“云”的关键技术。本文以作者自身的研究积累为基础,全面综述了国际上柔性大面积印刷电子新器件的最新研究进展,包括柔性薄膜晶体管、存储器、各类传感器等,以及柔性全金属印制的射频设别(RFID)技术和天线、智能包装和可穿戴智慧医疗设备(Bio-Patch)等物联网应用,对目前大面积柔性电子器件与系统在材料、器件以及系统集成等方面所面临的诸多挑战和困难展开了讨论。
Abstract:
As an emerging technology, the internet of things (IoT) offers the potential to connect everyday’s objects in the real physical world to cyber space such that it forms a network of things for smart sensing, control and management. Due to its flexibility, bendability and deformability, flexible large area electronics (FLAE) have found a unique position for smart things, and it becomes a core-technology that bridges the real world things to cloud. In this article, we review advances and recent progress of FLAE, mainly based on the results developed in author’s group. This covers devices of printed thin film transistors (TFT), memories and flexible sensors etc., and integrated circuits and systems for IoT applications such as fully metallic printed RFID (radio frequency identification) tag and antenna, intelligent package and bio-patch for food safety and healthcare. Future challenges and difficulties for FLAE in materials preparation, devices fabrication and system integration etc., are also discussed.

参考文献/References:

[1] Lirong Zheng(郑立荣), Hui Zhang(张晖), Weili Han(韩伟力) et al., Technologies, Applications, and Governance in the Internet-of-Things, Internet of Things - Global Technological and Societal Trends: From Smart Environments and Spaces to Green ICT [M], River Publisher, ISBN 879232973X, 2011: 143-176

[2] International Telecommunication Union ITU. ITU internet Reports 2005: The Internet of Things[R]. Tunis: ITU, 2005.

[3] Li Zhiyu(李志宇).物联网技术研究进展[J]. Computer Measurement & Control (计算机测量与控制),2012, 20(6):1445-1451.

[4] Lu Tao(卢涛),You Anjun(尤安军).美、欧、日、韩等国物联网产业的发展战略及其对我国的启示[J]. Science & Technology Progress and Policy (科技进步与对策),2012, 29(4):47-51.

[5] Chen Liuqin(陈柳钦).物联网:国内外发展动态及亟待解决的关键问题[J]. Decision-Making & Consultancy Newsletter (决策咨询通讯),2010,5:15-32.

[6] Zhan Y, Mei Y, Zheng L. Materials capability and device performance in flexible electronics for the Internet of Things[J]. Journal of Materials Chemistry C,2014 (待出版).

[7] Cui Zheng(崔铮).Printed Electronics: Materials, Technologies and Applications(印刷电子学-材料、技术及其应用)[M].Beijing: High Education Press, 2012.

[8] MacDonald W A, Looney M K, MacKerron D, et al. Latest advances in substrates for flexible electronics [J]. Journal of the SID,2007,15(12):1075-1083.

[9] Ji Lina(纪丽娜), Tang Xiaofeng(唐晓峰),Yang Zhenguo(杨振国).喷墨印制PCB用新型纳米银导电油墨的研发现状及趋势[J]. Ink-Jet Printing Technology (喷墨打印技术),2009,6:26-30.

[10] Sun Y, Rogers J A. Semiconductor Nanomaterials for Flexible Technologies: From Photovoltaics and Electronics to Sensors and Energy Storage[M]. Singapore: Elsevier Pte Ltd., 2010.

[11] Ortiz R P, Facchetti A, Marks T J. High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors[J]. Chemical Reviews,2010,110(1):205-239.

[12] Liu Z, Zhang Z -B, Chen Q, et al. Solution- processable nanotube/polymer composite for high-performance TFTs[J]. IEEE Electron Device Letters, 2011, 32(9),1299-1301.

[13] Liu Z, Gao X, Zhu Z, et al. Solution-processed logic Gates based on nanotube/polymer composite[J]. IEEE Transactions on Electron Devices, 2013,60(8) 2542-2547.

[14] Liu Z, Li H, Qiu Z,et al. Small-hysteresis thin-film transistors achieved by facile dip-coating of nanotube/polymer composite[J]. Advanced Materials, 2012, 24(27), 3633-3638.

[15] Qu M, Li H, Liu R, et al.Interaction of bipolaron with the H2O/O2 redox couple causes current hysteresis in organic thin-film transistors[J]. Nature Communications (已接受)

[16] Yang Y, Ouyang J, Ma LP, et al. Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices[J]. Advanced Functional Materials, 2006, 16(8): 1001-1014.

[17] Scott J C, Bozano L D. Nonvolatile Memory Elements Based on Organic Materials[J]. Advanced Materials, 2007, 19(11): 1452-1463.

[18] Tang W, Shi H, Xu G,et al. Memory Effect and Negative Differential Resistance by Electrode- Induced Two-Dimensional Single-Electron Tunneling in Molecular and Organic Electronic Devices[J]. Advanced Materials, 2005, 17(19): 2307-2311.

[19] Wang M L, Zhou J, Gao X D, et al. Delayed-switch-on effect in metal-insulator-metal organic memories[J]. Appliled Physics Letters, 2007, 91: 143511.

[20] You Y T, Zeng Q, Yao Y, et al. Field-induced evolution of metallic nano-tips in indium tin oxide-tris- (8-hydroxyquinoline) aluminum-aluminum device[J]. Applied Physics Letters, 2012,100: 123304.

[21] Yao Y, You Y T, Si W, et al. Modeling the underlying mechanisms for organic memory devices: Tunneling, electron emission, and oxygen adsorbing[J]. Applied Physics Letters, 2012,100: 263307.

[22] Chen Y -F, Mei Y F, Kaltofen R,et al.Towards flexible magnetoelectronics: Buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates[J].Advanced Materials, 2008,20(17): 3224-3228.

[23] Mei Y F, Kiravittaya S, Harazim S, et al. Principles and applications of micro and nanoscale wrinkles[J]. Materials Science and Engineering: R: Reports, 2010 70(3-6): 209-224.

[24] Melzer M, Makarov D, Calvimontes A, et al. Stretchable magnetoelectronics[J].Nano Letters 2011, 11(6): 2522-2526.

[25] Melzer M, Karnaushenko D, Makarov D, et al. Elastic magnetic sensor with isotropic sensitivity for in-flow detection of magnetic objects[J].RSC Advances, 2012,2: 2284-2288.

[26] Karnaushenko D, Makarov D, Yan C L, et al. Printable Giant Magnetoresistive Devices[J]. Advanced Materials, 2012, 24(33): 4518–4522.

[27] Huang G S, Mei Y F. Thinning and shaping solid films into functional and integrative nanomembranes[J]. Advanced Materials, 2012, 24(19): 2517-2546.

[28] Shao B, Chen Q, Amin Y, et al. An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate [C].IEEE Asian Solid State Circuits Conference (A-SSCC),Beijing: Institute of Electrical and Electronics Engineers,2010: 1-4.

[29] Shao B, Chen Q, Liu R, et al. Design of fully printable and configurable chipless RFID tag on flexible substrate[J]. Microwave and Optical Technology Letters, 2012, 54(1): 226-230.

[30] Zheng L, Rodriguez S, Zhang L, et al. Design and implementation of a fully reconfigurable chipless RFID tag using Inkjet printing technology[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Seattle, USA: Institute of Electrical and Electronics Engineers, 2008: 1524-1527.

[31] Shao B, Chen Q, Amin Y, et al. Process-dependence of inkjet printed folded dipole antenna for 2.45 GHz RFID tags[C]. 3rd IEEE European Conference on Antennas and Propagation (EuCAP),Berlin, Germany: Institute of Electrical and Electronics Engineers, 2009: 2336-2339.

[32] Shao B, Amin Y, Chen Q, et al. Directly-Printed Packaging Paper Based Chipless RFID Tag with Coplanar LC Resonator[J]. IEEE Antennas and Wireless Propagation Letters, 2013,12:1536-1225.

[33] Kortuem G. Smart Objects as Building Blocks for the Internet of the Things[J]. IEEE Internet Computing, 2010, 14(1):44-51.

[34] Chen Z, Lu C. Humidity Sensors: A Review of Materials and Mechanisms[J]. Sensor Letters, 2005, 3(4):274-295.

[35] Feng Y, Cabezas A L, Chen Q, et al. Flexible UHF Resistive Humidity Sensors Based on Carbon Nanotubes[J]. IEEE Sensors Journal 2012, 12(9):2844-2850.

[36] Xie L, Feng Y, M?ntysalo M, et al. Integration of f-MWCNT Sensor and Printed Circuits on Paper Substrate[J]. IEEE Sensors Journal, 2013, 13(10):3948-3956.

[37] Feng Y, Xie L, M?ntysalo M, et al. Electrical and Humidity-sensing Characterization of Inkjet -printed Multi-walled Carbon Nanotubes for Smart Packaging[C]. Proceedings of IEEE Sensors, USA: Institute of Electrical and Electronics Engineers (IEEE), 2013:1-4.

[38] M?ntysalo M, Xie L, Jonsson F, et al. System Integration of Smart Packages Using Printed Electronics[C]. Proceedings of Electronic Components and Technology Conference (ECTC), USA: Institute of Electrical and Electronics Engineers (IEEE), 2012: 997-1002.

[39] Feng Y, Chen Q, Zheng L-R. Design of A Printable Multi-functional Sensor for Remote Monitoring[C]. Proceedings of IEEE Sensors 2011, USA: Institute of Electrical and Electronics Engineers (IEEE), 2011:675-678.

[40] Yang G, Chen J, Xie L, et al. A Hybrid Low Power Bio-Patch for Body Surface Potential Measurement[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3):591-599.

[41] Yang G. Hybrid Integration of Active Bio-signal Cable with Intelligent Electrode: Steps toward Wearable Pervasive-Healthcare Applications [D]. Stockholm, Sweden: Royal Institute of Technology, 2013.

[42] Yang G, Chen J, Jonsson F, et al. A multi-parameter bio-electric ASIC sensor with integrated 2-wire data transmission protocol for wearable healthcare system[C]. Proceedings of Design, Automation & Test in Europe, Dresden, Germany: Institute of Electrical and Electronics Engineers (IEEE), 2012: 443-448.

[43] Yang G, Xie L, M?ntysalo M, et al. Bio-Patch Design and Implementation Based on a Low-Power System- on-Chip and Paper-based Inkjet Printing Technology[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(6): 1043-1050.

[44] Xie L, Yang G, M?ntysalo M, et al. A System-on-Chip and Paper-based Inkjet Printed Electrodes for a Hybrid Wearable Bio-Sensing System[C]. Proceedings of IEEE 34st Annual International Conference of the Engineering in Medicine and Biology Society, San Diego, USA: Institute of Electrical and Electronics Engineers (IEEE), 2012: 5026-5029.

[45] Xie L, Yang G, Xu L L, et al. Characterization of Dry Biopotential Electrodes[C]. Proceedings of IEEE 35st Annual International Conference of the Engineering in Medicine and Biology Society, Osaka, Japan: Institute of Electrical and Electronics Engineers (IEEE), 2013: 1478-1481.

[46] Xie L, Yang G, M?ntysalo M, et al. Heterogeneous Integration of Bio-Sensing System-on-Chip and Printed Electronics[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(4): 672-682.


更新日期/Last Update: 2014-02-27