[1]于相龙,周济.力学超材料的构筑及其超常新功能[J].中国材料进展,2019,(01):014-21.[doi:10.7502/j.issn.1674-3962.2019.01.02]
 YU Xianglong,ZHOU Ji.Mechanical Metamaterials: Architected Materials and Unexplored Properties[J].MATERIALS CHINA,2019,(01):014-21.[doi:10.7502/j.issn.1674-3962.2019.01.02]
点击复制

力学超材料的构筑及其超常新功能()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2019年第01期
页码:
014-21
栏目:
前沿综述
出版日期:
2019-01-29

文章信息/Info

Title:
Mechanical Metamaterials: Architected Materials and Unexplored Properties
作者:
于相龙1周济2
1. 中国科学技术大学 中科院材料力学行为和设计重点实验室,安徽 合肥 230027
2. 清华大学 材料学院新型陶瓷材料与精细工艺国家重点实验室,北京 100084
Author(s):
YU Xianglong1ZHOU Ji2
1.CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), University of Science and Technology of China, Hefei 230027, China?
2.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering
关键词:
力学超材料负泊松比五模式轻质超强负热膨胀
Keywords:
mechanical metamaterials negative Poissons ratio pentamode ultralight & ultrastiff negative thermal expansion
DOI:
10.7502/j.issn.1674-3962.2019.01.02
文献标志码:
A
摘要:
力学超材料是具有反直觉力学性质的人工微结构,其性能取决于人工原子的几何结构而不是材料组分。典型的力学超材料通常与4个弹性常数相关联:杨氏模量E,剪切模量G,体模量K和泊松比v。按所调控弹性常数的不同,将几何结构种类繁多的力学超材料分类为负泊松比拉胀材料(v<0,G>>K)、剪切模量消隐五模式反胀材料(G<<K)、负压缩性材料(-4G/3<K<0)、模式转换可调刚度材料(E)、低密度超强仿晶格材料(E/ρ)、负热膨胀材料。基于人工晶格结构和手性/反手性几何结构单元,扼要地论及在人工几何构筑方面的基本情况,以及不同构型与超常力学性能之间的联系。从而为拓展力学超材料的研究领域提供了系统性的架构,展望了面向3D打印技术制备的力学超材料的发展前景。
Abstract:
Mechanical metamaterials are manmade structures with counterintuitive mechanical properties that originate in the geometry of their unit cell instead of the properties of each component. The typical mechanical metamaterials are generally associated with the four elastic constants: Youngs modulus E, shear modulus G, bulk modulus K and Poissons ratio v. Here a clear classification of mechanical metamaterials is established based on the tuning elastic constants. Mechanical metamaterials can be divided into negative Poissons ratio auxetic metamaterials (υ<0, G>>K), pentamode metamaterials (G<<K), negative compressibility (-4G/3<K<0), pattern transformation with tunable stiffness (E), ultralight and ultrastiff lightweight (E/ρ), negative thermal expansion. Based on the lattice and chiral/antichiral structure, we review the architected mechanical metamaterials and unexplored properties. This provides a broad overview of significant potential mechanical metamaterials together with the upcoming challenges in the intriguing and promising research field.
更新日期/Last Update: 2018-12-29