[1]刘超,李世林,高宏权,等.水蒸气二氧化碳共活化制备聚苯胺基活性碳在离子液体超级电容器中的应用[J].中国材料进展,2021,40(04):308-313.[doi:10.7502/j.issn.1674-3962..201909007]
 LIU Chao,LI Shilin,GAO Hongquan,et al.Preparation and Application of H2O(gas)-CO2 Co-Activated PolyanilineBased Carbon Materials for Ionic Liquid Supercapacitor[J].MATERIALS CHINA,2021,40(04):308-313.[doi:10.7502/j.issn.1674-3962..201909007]
点击复制

水蒸气二氧化碳共活化制备聚苯胺基活性碳在离子液体超级电容器中的应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
40
期数:
2021年第04期
页码:
308-313
栏目:
出版日期:
2021-04-30

文章信息/Info

Title:
Preparation and Application of H2O(gas)-CO2 Co-Activated PolyanilineBased Carbon Materials for Ionic Liquid Supercapacitor
文章编号:
1674-3962(2021)04-0308-06
作者:
刘超李世林高宏权周海涛
(江苏大学材料科学与工程学院, 江苏 镇江 212013)
Author(s):
LIU Chao LI Shilin GAO Hongquan ZHOU Haitao
(School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)
关键词:
H2O(gas)-CO2共活化聚苯胺基活性碳超级电容器离子电解液有机电解液
Keywords:
H2O(gas)-CO2 co-activation polyaniline-based activated carbon supercapacitors ionic liquid electrolyte organic electrolyte
分类号:
TM242;TM53
DOI:
10.7502/j.issn.1674-3962..201909007
文献标志码:
A
摘要:
通过水蒸气二氧化碳(H2O(gas)-CO2)共活化的物理活化方法制备聚苯胺基活性碳被广泛应用于商业活性碳的规模化生产,相比于化学活化方法,该方法制备的活化产物无活化剂残留、清洗简单且工艺过程环保。以聚苯胺为原料,探究了H2O(gas)的量和CO2分压对活化产物的影响。采用氮气吸/脱附、扫描电镜(SEM)、透射电镜(TEM)等表征手段系统研究了活性碳的孔径分布及孔道结构,采用电化学工作站研究了活性碳作为离子液体电容器电极材料的电化学性能。当H2O(gas) 和碳化产物的质量比为4∶1、CO2分压为0.6时,所制备活性碳的比表面积和孔体积可分别达到2357 m2·g-1和1.45 cm3·g-1。该样品具有丰富的中孔和大孔结构,且中孔比表面积占总比表面积的比率约为40%。采用离子电解液时,该样品作为电容器的电极材料具有较高的容量,在0.1 A·g-1的电流密度下容量可达到203 F·g-1,并拥有优异的倍率性能以及良好的循环稳定性,在10 000次循环(5 A·g-1)后具有91%的容量保持率。采用有机电解液时,其在1 A·g-1的电流密度下容量可达134 F·g-1,且在10 A·g-1的大电流密度下容量保持率达100%。该活性碳在离子电解液和有机电解液中均具有的优异电化学性能,可归因于其丰富的中孔和大孔结构极大地减少了离子迁移阻力,从而提升了其倍率性能和在离子电解液中的循环性能。
Abstract:
The preparation of polyaniline-based activated carbon by H2O(gas)-CO2 co-activation has been successfully applied to the preparation of commercial activated carbon. Compared with the chemical activation method, the product prepared by this physical activation method has no residue of activator, and the cleaning and environmental friendly. In this work, we used the polyaniline as the raw material, and explored the effect of the amount of H2O(gas) and the partial pressure of CO2 on the activated product. The pore size distribution and space structure of activated carbon were studied by means of N2 adsorption and desorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical performance of activated carbon as electrode materials of ionic liquid capacitor was studied by electrochemical workstation. When the mass ratio of H2O(gas) to the carbonized product is 4∶1, the partial pressure of the CO2 is 0.6, the specific surface area and the pore volume of activated carbon reaches 2357 m2·g-1 and 1.45 cm3·g-1, respectively. In addition, the sample has a mesopores and macropores-rich structure, and the ratio of the mesopore specific surface area to the total specific surface area is about 40%. In ionic liquid electrolyte, the activated carbon used as electrode material of super capacitor has a high capacitance of 203 F·g-1 at the current density of 0.1 A·g-1, and has a capacitance retention of 91% after 10 000 cycles (5 A·g-1), which shows excellent rate performance and good cycle stability. When the organic electrolyte was used, the capacitance of sample is 134 F·g-1 at the current density of 1 A·g-1, and the capacitance retention is 100% at the current density of 10 A·g-1. The excellent electrochemical performance of activated carbon in the ionic liquid electrolyte and organic electrolyte is due to the unique mesopores and macroporesrich structure, which greatly reduces the ion transport resistance, thus improving the rate performance and cycle stability in ionic liquid electrolyte.

备注/Memo

备注/Memo:
收稿日期:2019-09-05修回日期:2019-12-19 基金项目:国家自然科学基金资助项目(51702131,51774151);江苏省自然科学基金项目(SBK 2017041705);江苏大学绿色材料与冶金研究院科研启动基金项目(5501670 001,5501670002,4111220019) 第一作者:刘超,男,1993 年生,硕士研究生通讯作者:周海涛,男,1985 年生,副研究员,硕士生导师, Email: haitao19850@ujs.edu.cn
更新日期/Last Update: 2021-03-24