[1]李惠琴,赵嘉莘,黄馨锐,等.热电池隔膜材料的研究进展[J].中国材料进展,2020,(10):763-768.[doi:10.7502/j.issn.1674-3962.202006003]
 LI Huiqin,ZHAO Jiaxin,HUANG Xinrui,et al.Research Progress of Thermal Battery Separator[J].MATERIALS CHINA,2020,(10):763-768.[doi:10.7502/j.issn.1674-3962.202006003]
点击复制

热电池隔膜材料的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2020年第10期
页码:
763-768
栏目:
出版日期:
2020-10-30

文章信息/Info

Title:
Research Progress of Thermal Battery Separator
文章编号:
1674-3962(2020)10-0763-06
作者:
李惠琴1赵嘉莘1黄馨锐1曾梦诗1刘敬松1杨潇薇2杨兆堂2刘效疆2
(1.西南科技大学材料科学与工程学院,四川 绵阳 621000)(2.中国工程物理研究院 电子工程研究所,四川 绵阳 621000)
Author(s):
LI Huiqin1ZHAO Jiaxin1HUANG Xinrui1ZENG Mengshi1LIU Jingsong1 YANG Xiaowei2YANG Zhaotang2LIU Xiaojiang2
(1. School of Materials Science and Engineering, Southwest University of Science and Technology,Mianyang 621000,China) (2. Institute of Electronic Engineering, China Academy of Engineering Physics,Mianyang 621000,China)
关键词:
热电池隔膜材料熔盐电解质粘结剂混合工艺
Keywords:
thermal battery separator materials molten salt electrolyte binder mixed process
分类号:
TM915
DOI:
10.7502/j.issn.1674-3962.202006003
文献标志码:
A
摘要:
热电池常被用于核武器、导弹和火炮等现代化军事武器的一次性储备电源,其隔膜材料由熔盐电解质与粘结剂组成,作用是在常温的贮存状态下,分隔电池的阴极与阳极(防止自放电现象产生);在高温(350~550 ℃)工作状态下,受电池内部的加热系统激活,不导电的固体熔盐电解质发生熔融,以离子导电的方式连接电极。其中,熔盐电解质在热电池工作温度区间内处于液态(吸热导致熔融),而粘结剂始终保持为固态以便吸附液态熔盐,起抑制电解质流动的作用,用以保证热电池的正常运行。数10年来,相关科研工作者始终在追求熔盐电解质低熔点和高电导率、粘结剂高稳定性和高比表面积的道路上不断探索,以延长热电池的寿命,减少粘结剂的添加量,降低热电池内阻,提升电池相关的电学性能,从而使热电池向高性能、小型化趋势发展。概述了近年来热电池隔膜材料的发展历程,分别从熔盐电解质、粘结剂以及隔膜材料的混合工艺3个方面展开介绍。最后,根据研究进展和实际应用需求,对热电池隔膜材料的未来进行了展望。
Abstract:
Thermal batteries are often used as a one-time reserve power source for modern military weapons such as nuclear weapons, missiles and artillery. The separator material of the thermal battery is composed of molten salt electrolyte and binder. It is used to separate the cathode and anode of the battery under normal temperature storage conditions (to prevent self-discharge). Under the working condition of high temperature (350~550 ℃), activated by the heating system inside the battery, the non-conductive solid molten salt electrolyte melts, and the electrodes are connected by ion conduction. Among them, the molten salt electrolyte is in a liquid state within the operating temperature range of the thermal battery (endotherm causes melting), and the binder is always kept in a solid state to adsorb the liquid molten salt, which plays a role in inhibiting the flow of the electrolyte to ensure the normal operation of the thermal battery. For decades, related researchers have been exploring the molten salt electrolyte with low melting point and high electrical conductivity, as well as the binder with high stability and high specific surface area, to extend the life of the thermal battery and reduce the binder amount. Lessening the binder can reduce the internal resistance of the thermal battery and improve the electrical performance of the battery, thereby making the thermal battery develop to the trend of high performance and miniaturization. This article outlines the development of separator materials of thermal batteries in the past years, and introduces from three aspects of the mixed process of molten salt electrolyte, binder and separator material. Finally, according to the research progress and actual application requirements, the future of thermal battery separator materials is prospected.

备注/Memo

备注/Memo:
收稿日期:2020-06-03修回日期:2020-07-15 基金项目:国家自然科学基金NSAF联合基金项目(U1430108)第一作者:李惠琴,女,1973年生,实验师通讯作者:刘敬松,男,1975年生,教授,博士生导师, Email:liujingsong@swust.edu.cn
更新日期/Last Update: 2020-10-11