[1]张宝,梁祯,张雁南,等.废旧锂离子电池正极材料回收研究进展[J].中国材料进展,2024,43(05):050-59.
 ZHANG Bao,LIANG Zhen,ZHANG Yannan,et al.Research progress on cathode material recycling of waste lithium-ion batteries[J].MATERIALS CHINA,2024,43(05):050-59.
点击复制

废旧锂离子电池正极材料回收研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第05期
页码:
050-59
栏目:
出版日期:
2024-05-30

文章信息/Info

Title:
Research progress on cathode material recycling of waste lithium-ion batteries
作者:
张宝梁祯张雁南孟奇董鹏张英杰
1.昆明理工大学 冶金与能源工程学院,锂离子电池及材料制备技术国家地方联合工程研究中心,云南 昆明 650093; 2.昆明理工大学 材料科学与工程学院,云南 昆明 650093
Author(s):
ZHANG Bao LIANG Zhen ZHANG Yannan MENG Qi DONG Peng ZHANG Yingjie
1. School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, State Joint Engineering Research Center for Lithium-ion Battery and Material Preparation Technology, Kunming 650093, Yunnan, China. 2. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
关键词:
废旧锂离子电池正极材料预处理工艺回收工艺回收金属回收再生
Keywords:
Waste lithium-ion batteries cathode materials pretreatment process recycling process metal recovery recycling and regeneration.
摘要:
随着锂离子电池 (LIBs) 在电动汽车、3C电子产品和储能领域的大规模应用和产销量的日益剧增,其退役后带来的金属浪费和环境污染问题也日益突出。有必要大力开发绿色环保、高效低成本的废旧锂离子电池正极材料回收工艺,实现金属资源的周期性利用。本文回顾了废旧锂离子电池正极材料回收工艺的最新进展。概述了现有的回收工艺,详细介绍了预处理、火法冶金、湿法冶金、生物浸出和直接回收等回收工艺的研究现状。并通过对比分析现有技术存在的问题,综合讨论了各工艺的回收效率,安全性和经济价值。最后,展望了废旧锂离子电池正极材料回收再利用的前景和发展趋势,旨在为直接化、高值化、规模化的废旧锂电池回收再用研究提供借鉴与参考。
Abstract:
With the increasing large-scale application and production as well as the sales of lithium-ion batteries (LIBs) in electric vehicles, 3C electronics and energy storage devices, the metal waste and environmental pollution caused by their retirement are also becoming increasingly prominent. It is necessary to vigorously develop a green, environmentally friendly, efficient and low-cost cathode material recycling process for waste lithium-ion batteries to realize the cycle utilization of non-ferrous metal resources. This paper reviews the latest progress in the material recycling process of cathode materials for the used lithium-ion batteries. The existing recovery processes are summarized. Moreover, the research status of recovery processes such as the pretreatment, pyrometallurgy, hydrometallurgy, biological leaching and direct recovery strategy are detailed illustrated. The problems and the advantages of these technology are compared and analyzed. Furthermore, the recovery efficiency, safety and economic value are comprehensively discussed. Finally, the prospect and development trend of the recycling and reuse of cathode materials of used lithium-ion batteries are outlooked, aiming at the direct, high-value and large-scale research on the recycling and reuse of used lithium batteries to provide lessons and references.

参考文献/References:

[1]H. M. Qian, H. Q. Ren, Y. Zhang, X. F. He, W. B. Li, J. J. Wang, J. H. Hu, H. Yang, H. M. K. Sari, Y. Chen, X. F. Li, Electrochemical Energy Reviews, 2022, 5, 2520-2532.
[2]S. Huang, W. Lin, L. Li, P. Liu, T. Huang, Z. Huang, J. kong, W. Xiong, W. Yu, S. Ye, J. Hu, Q. Zhang, J. Liu, Progress in Natural Science: Materials International, 2023, 33, 126-131.
[3]X. H. Zhong, W. Liu, J. W. Han, F. Jiao, W. Q. Qin, T. Liu, Journal of Cleaner Production, 2020, 263, 121439.
[4]C. Wu, M. Xu, C. Zhang, L. Ye, K. Zhang, H. Cong, L. Zhuang, X. Ai, H. Yang, J. Qian, Energy Storage Materials, 2023, 55, 154-165.
[5]W. Yu, Y. Guo, S. Xu, Y. Yang, Y. Zhao, J. Zhang, Energy Storage Materials, 2023, 54, 172-220.
[6]J. Lin, E. S. Fan, X. D. Zhang, Z. J. Li, Y. Dai, R. J. Chen, F. Wu, L. Li, Advanced Energy Materials, 2022, 12, 2201174.
[7]S. C. He, B. P. Wilson, M. Lundstrom, Z. H. Liu, Journal of Cleaner Production, 2020, 268, 122299.
[8]V. M. Leal, E. L. D. Coelho, M. B. J. G. Freitas, Journal of Energy Chemistry, 2023, 79, 118-134.
[9]K. Liu, S. L. Yang, F. Y. Lai, H. Q. Wang, Y. G. Huang, F. H. Zheng, S. B. Wang, X. H. Zhang, Q. Y. Li, ACS Applied Energy Materials, 2020, 3, 4767-4776.
[10]E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chemical Reviews, 2020, 120, 7020-7063.
[11]J. X. Wang, Q. Zhang, J. Z. Sheng, Z. Liang, J. Ma, Y. M. Chen, G. M. Zhou, H. M. Cheng, National Science Review, 2022, 9, nwac097.
[12]J. F. Mao, C. Ye, S. L. Zhang, F. X. Xie, R. Zeng, K. Davey, Z. P. Guo, S. Z. Qiao, Energy & Environmental Science, 2022, 15, 2732-2752.
[13]O. S. Kwon, I. Sohn, Resources Conservation and Recycling, 2020, 158, 104809.
[14]W. G. Lv, Z. H. Wang, H. B. Cao, Y. Sun, Y. Zhang, Z. Sun, ACS Sustainable Chemistry & Engineering, 2018, 6, 1504-1521.
[15]J. J. Roy, B. Cao, S. Madhavi, Chemosphere, 2021, 282, 130944.
[16]G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature, 2019, 575, 75-86.
[17]J. Wu, M. Zheng, T. Liu, Y. Wang, Y. Liu, J. Nai, L. Zhang, S. Zhang, X. Tao, Energy Storage Materials, 2023, 54, 120-134.
[18]F. Pagnanelli, E. Moscardini, P. Altimari, T. Abo Atia, L. Toro, Waste Management, 2017, 60, 706-715.
[19]J. L. Yang, X. X. Zhao, M. Y. Ma, Y. Liu, J. P. Zhang, X. L. Wu, Carbon Neutralization, 2022, 1, 247-266.
[20]D. W. Yu, Z. Huang, B. Makuza, X. Y. Guo, Q. H. Tian, Minerals Engineering, 2021, 173, 107218.
[21]S. Kim, J. Bang, J. Yoo, Y. Shin, J. Bae, J. Jeong, K. Kim, P. Dong, K. Kwon, Journal of Cleaner Production, 2021, 294, 126329.
[22]G. Lombardo, B. Ebin, J. F. M. R. St, B. M. Steenari, M. Petranikova, Journal of Hazardous Materials, 2020, 393, 122372.
[23]G. Zhang, X. Yuan, Y. He, H. Wang, T. Zhang, W. Xie, Journal of Hazardous Materials, 2021, 406, 124332.
[24]B. Makuza, Q. H. Tian, X. Y. Guo, K. Chattopadhyay, D. W. Yu, Journal of Power Sources, 2021, 491, 21.
[25]B. Makuza, Q. H. Tian, X. Y. Guo, K. Chattopadhyay, D. W. Yu, Journal of Power Sources, 2021, 491, 229622.
[26]X. Zhong, W. Liu, J. Han, F. Jiao, W. Qin, T. Liu, C. Zhao, Waste Management, 2019, 89, 83-93.
[27]M. M. Wang, Q. Y. Tan, L. L. Liu, J. H. Li, ACS Sustainable Chemistry & Engineering, 2019, 7, 8287-8294.
[28]X. Chen, S. Li, Y. Wang, Y. Jiang, X. Tan, W. Han, S. Wang, Waste Management, 2021, 136, 67-75.
[29]X. P. Chen, S. Z. Li, X. Wu, T. Zhou, H. R. Ma, Journal of Cleaner Production, 2020, 258, 120943.
[30]H. Wang, J. Liu, X. Bai, S. Wang, D. Yang, Y. Fu, Y. He, Waste Management, 2019, 91, 89-98.
[31]B. Makuza, Q. H. Tian, X. Y. Guo, K. Chattopadhyay, D. W. Yu, Journal of Power Sources, 2021, 491, 229622.
[32]R. H. Wang, Y. H. Zhang, K. W. Sun, C. F. Qian, W. Z. Bao, Journal of Materials Chemistry A, 2022, 10, 17053-17076.
[33]M. Y. Chen, X. T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Joule, 2019, 3, 2622-2646.
[34]G.-x. Ren, S.-w. Xiao, M.-q. Xie, B. Pan, J. Chen, F.-g. Wang, X. Xia, Transactions of Nonferrous Metals Society of China, 2017, 27, 450-456.
[35]J. Xiao, J. Li, Z. Xu, Journal of Hazardous Materials, 2017, 338, 124-131.
[36]J. Li, G. Wang, Z. Xu, Journal of Hazardous Materials, 2016, 302, 97-104.
[37]Y. Q. Tang, X. Qu, B. L. Zhang, Y. Zhao, H. W. Xie, J. J. Zhao, Z. Q. Ning, P. F. Xing, H. Y. Yin, Journal of Cleaner Production, 2021, 279, 123633.
[38]C. Peng, F. P. Liu, Z. L. Wang, B. P. Wilson, M. Lundstrom, Journal of Power Sources, 2019, 415, 179-188.
[39]J. Xiao, J. Li, Z. Xu, Environmental Science & Technology, 2020, 54, 9-25.
[40]P. Meshram, A. Mishra, Abhilash, R. Sahu, Chemosphere, 2020, 242, 125291.
[41]B. W. Zhu, Y. J. Zhang, Y. L. Zou, Z. L. Yang, B. Zhang, Y. Zhao, M. Y. Zhang, Q. Meng, P. Dong, Journal of Environmental Management, 2021, 300, 113710.
[42]D. M. Song, T. Y. Wang, Z. A. Liu, S. Q. Zhao, J. W. Quan, G. M. Li, H. C. Zhu, J. W. Huang, W. Z. He, Journal of Environmental Chemical Engineering, 2022, 10, 107102.
[43]X. Xiao, B. W. Hoogendoorn, Y. Q. Ma, S. A. Sahadevan, J. M. Gardner, K. Forsberg, R. T. Olsson, Green Chemistry, 2021, 23, 8519-8532.
[44]S. Wang, C. Wang, F. Lai, F. Yan, Z. Zhang, Waste Management, 2020, 102, 122-130.
[45]T. Nshizirungu, M. Rana, Y. T. Jo, J. H. Park, Journal of Hazardous Materials, 2021, 414, 125575.
[46]X. Chang, M. Fan, C. F. Gu, W. H. He, Q. Meng, L. J. Wan, Y. G. Guo, Angewandte Chemie. International Edition in English, 2022, 61, e202202558.
[47]L. Q. Lin, Z. M. Lu, W. Zhang, Resources Conservation and Recycling, 2021, 167, 105416.
[48]Y. H. Hua, Y. Q. Sun, F. Yan, S. B. Wang, Z. H. Xu, B. J. Zhao, Z. T. Zhang, Chemical Engineering Journal, 2022, 436, 133200.
[49]T. Huang, D. P. Song, L. F. Liu, S. W. Zhang, Separation and Purification Technology, 2019, 215, 51-61.
[50]P. K. Choubey, O. S. Dinkar, R. Panda, A. Kumari, M. K. Jha, D. D. Pathak, Waste Management, 2021, 121, 452-457.
[51]L. Zhang, L. Li, H. Rui, D. Shi, X. Peng, L. Ji, X. Song, Journal of Hazardous Materials, 2020, 398, 122840.
[52]Y. Yang, S. Lei, S. Song, W. Sun, L. Wang, Waste Management, 2020, 102, 131-138.
[53]J. H. Ni, J. Y. Zhou, J. H. Bing, X. F. Guan, Separation and Purification Technology, 2022, 278, 119485.
[54]X. Yang, Y. J. Zhang, Q. Meng, P. Dong, P. C. Ning, Q. X. Li, Rsc Advances, 2021, 11, 268-277.
[55]K. H. Chan, M. Malik, G. Azimi, Resources Conservation and Recycling, 2022, 178, 106076.
[56]O. N. Kononova, A. I. Zemlyanskaya, E. V. Duba, Russian Journal of Applied Chemistry (Translation of Zhurnal Prikladnoi Khimii), 2015, 88, 1763-1769.
[57]A. H. Kaksonen, N. J. Boxall, Y. Gumulya, H. N. Khaleque, C. Morris, T. Bohu, K. Y. Cheng, K. M. Usher, A. M. Lakaniemi, Hydrometallurgy, 2018, 180, 7-25.
[58]Z. S. Yu, H. W. Han, P. Y. Feng, S. Zhao, T. Y. Zhou, A. Kakade, S. Kulshrestha, S. Majeed, X. K. Li, Bioresource Technology, 2020, 297, 122416.
[59]J. J. Roy, S. Madhavi, B. Cao, Journal of Cleaner Production, 2021, 280, 124242.
[60]R. Quatrini, D. B. Johnson, Trends in Microbiology, 2019, 27, 282-283.
[61]D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, Y. H. Rhee, Waste Management, 2008, 28, 333-338.
[62]J. J. Roy, M. Srinivasan, B. Cao, ACS Sustainable Chemistry & Engineering, 2021, 9, 3060-3069.
[63]M. P. Do, J. J. Roy, B. Cao, M. Srinivasan, ACS Sustainable Chemistry & Engineering, 2022, 10, 2634-2644.
[64]Y. Y. Xin, X. M. Guo, S. Chen, J. Wang, F. Wu, B. P. Xin, Journal of Cleaner Production, 2016, 116, 249-258.
[65]T. C. Liu, J. Chen, X. Shen, H. L. Li, Separation and Purification Technology, 2021, 259, 118088.
[66]M. C. Fan, J. Wozny, J. Gong, Y. Q. Kang, X. S. Wang, Z. X. Zhang, G. M. Zhou, Y. Zhao, B. H. Li, F. Y. Kang, Rare Metals, 2022, 41, 1843-1850.
[67]P. P. Xu, Q. Dai, H. P. Gao, H. D. Liu, M. H. Zhang, M. Q. Li, Y. Chen, K. An, Y. S. Meng, P. Liu, Y. R. Li, J. S. Spangenberger, L. Gaines, J. Lu, Z. Chen, Joule, 2020, 4, 2609-2626.
[68]J.-L. Yang, X.-X. Zhao, W.-H. Li, H.-J. Liang, Z.-Y. Gu, Y. Liu, M. Du, X.-L. Wu, eScience, 2022, 2, 95-101.
[69]H. J. Liang, B. H. Hou, W. H. Li, Q. L. Ning, X. Yang, Z. Y. Gu, X. J. Nie, G. Wang, X. L. Wu, Energy & Environmental Science, 2019, 12, 3575-3584.
[70]Y. A. Wang, W. Y. Diao, C. Y. Fan, X. L. Wu, J. P. Zhang, Chemistry-a European Journal, 2019, 25, 8975-8981.
[71]Z. T. Fei, Y. Y. Su, Q. Meng, P. Dong, Y. J. Zhang, Energy Storage Materials, 2023, 60, 102833.
[72]H. H. Nie, L. Xu, D. W. Song, J. S. Song, X. X. Shi, X. Q. Wang, L. Q. Zhang, Z. H. Yuan, Green Chemistry, 2015, 17, 1276-1280.
[73]Y. Shi, G. Chen, F. Liu, X. Yue, Z. Chen, ACS Energy Letters, 2018, 3, 1683-1692.
[74]X. J. Qiu, J. G. Hu, Y. Tian, W. T. Deng, Y. Yang, D. S. Silvester, G. Q. Zou, H. S. Hou, W. Sun, Y. H. Hu, X. B. Ji, Journal of Hazardous Materials, 2021, 416, 126114.
[75]T. Wang, H. M. Luo, Y. C. Bai, J. L. Li, I. Belharouak, S. Dai, Advanced Energy Materials, 2020, 10, 2001204.
[76]Y. Shi, M. Zhang, Y. S. Meng, Z. Chen, Advanced Energy Materials, 2019, 9, 1900454.
[77]G. H. Jiang, Y. N. Zhang, Q. Meng, Y. J. Zhang, P. Dong, M. Y. Zhang, X. Yang, ACS Sustainable Chemistry & Engineering, 2020, 8, 18138-18147.
[78]B. H. Cui, C. Liu, J. F. Zhang, J. J. Lu, S. L. Liu, F. S. Chen, W. Zhou, G. Y. Qian, Z. Wang, Y. D. Deng, Y. N. Chen, W. B. Hu, Science China-Materials, 2021, 64, 2710-2718.

更新日期/Last Update: 2024-04-28