中国材料进展
过刊查询页面
关键词中包括
machine learning
的文章
1
Research Progress of Machine Learning Aided Titanium Alloys Design
张 闫,薛德祯,辛社伟,王 晓,周 伟,潘 曦,李星吾,张冰洁,郝梦园
2025年04 [319-329][
Abstract
](
343
)
[
pdf
10457KB]
(
8
)
2
Application Progress of Machine Learning Interatomic Potential Molecular Dynamics Simulations in the Research of Electrochemical Energy Storage Materials
林奕希,蒋雨桥,冯相民,要腾宇,夏颖慧,刘振辉,郑明波,申来法,许真铭
2025年04 [330-348][
Abstract
](
326
)
[
pdf
41012KB]
(
13
)
3
Creep Life Prediction of Ni-Based Single Crystal Superalloys by Physical Metallurgy Information Guided Machine Learning
付佳博1,王晨充1,MATEO Carlos Gracia2, CARABALLO Isaac Toda2, CABALLERO Francisca Garcia2,于皓1
2023年第09期 [722-731][
Abstract
](
1229
)
[
pdf
10182KB]
(
942
)
4
Optimal Design of Microwave Absorbing Material of Carbonyl Iron/Ferroferric Oxide Composite via Machine Learning
仲陆祎,权斌,车仁超,陆文聪
2024年第07期 [652-657][
Abstract
](
660
)
[
pdf
4798KB]
(
344
)
5
Application of Machine Learning in Steel Materials: A Survey
王海伟1,2,叶波1,2,冯晶3,4,种晓宇3,4
2023年第10期 [806-813][
Abstract
](
1274
)
[
pdf
9708KB]
(
1306
)
6
Attribute Prediction of Aluminum Alloy Based on Machine Learning
左厚辰1,江永全*2,杨燕2
2025年06 [90-99][
Abstract
](
2014
)(
)
7
Materials Design of Perovskite Manganates Based on Machine Learning
卢凯亮1,畅东平1,纪晓波2,陆文聪1,2
2023年第08期 [625-630][
Abstract
](
1361
)
[
pdf
7282KB]
(
619
)
8
Machine Learning Prediction Model for Microstructure-Tensile Properties Relationship of Superalloys
刘芳宁,王越,孙瑞侠
2022年第11期 [938-946][
Abstract
](
3335
)
[
pdf
9915KB]
(
1346
)
9
Research Progress of Machine Learning Aided High Entropy Alloy Design
赵鼎祺,乔珺威,吴玉程
2021年第07期 [508-517][
Abstract
](
3913
)
[
pdf
9299KB]
(
2108
)
10
Data-Driven Designing of Microstructures and Properties of Magnesium Alloys
曾小勤,谢天,应韬,朱虹,刘言伟,王乐耘,丁文江
2020年第1期 [1-11][
Abstract
](
5477
)
[
pdf
11147KB]
(
3819
)
11
Machine Learning Assisted High-Throughput Experiments Accelerates the Composition Design of Hard High-Entropy Alloy CoxCryTizMouWv
王炯1,肖斌2,刘轶1,2
2020年第04期 [269-277][
Abstract
](
5106
)
[
pdf
17312KB]
(
3438
)