中国材料进展 过刊查询页面

    关键词中包括 machine learning 的文章

1 Research Progress of Machine Learning Aided Titanium Alloys Design
张 闫,薛德祯,辛社伟,王 晓,周 伟,潘 曦,李星吾,张冰洁,郝梦园
2025年04 [319-329][Abstract](343)[pdf 10457KB](8)
2 Application Progress of Machine Learning Interatomic Potential Molecular Dynamics Simulations in the Research of Electrochemical Energy Storage Materials
林奕希,蒋雨桥,冯相民,要腾宇,夏颖慧,刘振辉,郑明波,申来法,许真铭
2025年04 [330-348][Abstract](326)[pdf 41012KB](13)
3 Creep Life Prediction of Ni-Based Single Crystal Superalloys by Physical Metallurgy Information Guided Machine Learning
付佳博1,王晨充1,MATEO Carlos Gracia2, CARABALLO Isaac Toda2, CABALLERO Francisca Garcia2,于皓1
2023年第09期 [722-731][Abstract](1229)[pdf 10182KB](942)
4 Optimal Design of Microwave Absorbing Material of Carbonyl Iron/Ferroferric Oxide Composite via Machine Learning
仲陆祎,权斌,车仁超,陆文聪
2024年第07期 [652-657][Abstract](660)[pdf 4798KB](344)
5 Application of Machine Learning in Steel Materials: A Survey
王海伟1,2,叶波1,2,冯晶3,4,种晓宇3,4
2023年第10期 [806-813][Abstract](1274)[pdf 9708KB](1306)
6 Attribute Prediction of Aluminum Alloy Based on Machine Learning
左厚辰1,江永全*2,杨燕2
2025年06 [90-99][Abstract](2014)()
7 Materials Design of Perovskite Manganates Based on Machine Learning
卢凯亮1,畅东平1,纪晓波2,陆文聪1,2
2023年第08期 [625-630][Abstract](1361)[pdf 7282KB](619)
8 Machine Learning Prediction Model for Microstructure-Tensile Properties Relationship of Superalloys
刘芳宁,王越,孙瑞侠
2022年第11期 [938-946][Abstract](3335)[pdf 9915KB](1346)
9 Research Progress of Machine Learning Aided High Entropy Alloy Design
赵鼎祺,乔珺威,吴玉程
2021年第07期 [508-517][Abstract](3913)[pdf 9299KB](2108)
10 Data-Driven Designing of Microstructures and Properties of Magnesium Alloys
曾小勤,谢天,应韬,朱虹,刘言伟,王乐耘,丁文江
2020年第1期 [1-11][Abstract](5477)[pdf 11147KB](3819)
11 Machine Learning Assisted High-Throughput Experiments Accelerates the Composition Design of Hard High-Entropy Alloy CoxCryTizMouWv
王炯1,肖斌2,刘轶1,2
2020年第04期 [269-277][Abstract](5106)[pdf 17312KB](3438)