[1]Levenson-Falk, E. M., Vijay, R., Antler, N. et al, A dispersive nanoSQUID magnetometer for ultra-low noise, high bandwidth flux detection. 2013, arXiv:1301.3184.
[2] J.Clarke, A.I.Braginski, The SQUID Handbook: Fundamentals and Technologyof SQUIDs and SQUID Systems, Wiley-VCH, 1st edition, 2004.
[3] Y. NakayaandH.Mori, Magnetocardiography, Clin.Phys. Physiol.Meas., 1992, 13:191-229.
[4] Koch, H., Recent advances in magnetocardiography, Journal of Electrocardiology, 2004, 37:117-122.
[5] Hämäläinen, M., Hari, R., Ilmoniemi, R. J., et al, Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65: 413–497.
[6] Vrba J.,Magnetoencephalography:Theartoffinding aneedleinahaystack,PhysicaC,2002, 368: 1-9.
[7] McDermott, R. TrabesingerA. H., MückM., et al. Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields. Science, 2002, 295: 2247–2249.
[8] Clarke, J., Hatridge, M. andMößle, M., SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields. Annu.Rev. Biomed. Eng. 2007, 9:389–413.
[9] Qiu, L. Q. Zhang Y., Krause H. J., et al. High-Performance Low-Field NMR Utilizing a High-Tcrf SQUID. IEEE Trans. Appl. Supercond. 2009, 19: 831–834.
[10] Yang, H.C., Liao S. H., HorngH. E., et al. Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device. Applied Physics Letters, 2002, 88: 252505.
[11] Yang H.C., Horng H.E., Yang S. Y., et al, Advances in biomagnetic research using high- Tc superconducting quantum interference devices. Superconductor Science and Technology 2009, 22:093001.
[13] Krause, H.J., Wolf W., GlaasW., et al. SQUID array for magnetic inspection of prestressed concrete bridges. Physica C: Superconductivity 2002, 368: 91–95.
[14] Hohmann, R., MausM., LomparskiD., et al. Aircraft wheel testing with machine-cooled HTS SQUID gradiometer system. IEEE Transactions on Applied Superconductivity 1999, 9: 3801–3804.
[15] Kirtley, J. R., KetchenM. B., TsueiC. C., et al. Design and applications of a scanning SQUID microscope. IBM Journal of Research and Development 1995, 39: 655–668.
[16] Drung, D., High-Tc and low-Tc dc SQUID electronics. Supercond. Sci. Technol. 2003, 16: 1320.
[17] Greenberg, Y. S. Application of superconducting quantum interference devices to nuclear magnetic resonance. Rev. Mod. Phys. 1998, 70: 175–222.
[18] Kumar, S., Avrin, W. F. andWhitecotton, B. R. NMR of room temperature samples with a flux-locked dc SQUID. IEEE Transactions on Magnetics 1996, 32: 5261–5264.
[19] W. H. Bergmann , Processing of the 3rd Internatinal Workshop on Biomagntism . 1981,535-548
[20] 李绍,任育峰,田野 et al. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究, 物理学报 2009,58:5744–5749.
[21] Liao S.H., Yang H. C.,Horng H. E., et al. Sensitive J-coupling spectroscopy using high-Tc superconducting quantum interference devices in magnetic fields as low as microteslas. Supercond. Sci. Technol. 2009, 22: 045008.
[22]Wang N., Jin Y. R., Li S., et al., Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID, Journal of Physics Conference Series, 2012, 400(5): 052041.
[23] 王宁, 金贻荣, 邓辉, et al.,基于高温超导量子干涉仪的超低场核磁共振成像研究,物理学报,2012, 61(21):213302.
[24] HuF. Q., JiaQ. J., LiY. L., et al., Facile synthesis of ultra-small PEGylated iron oxide nanoparticles for dual-contrast T1-and T2-weighted magnetic resonance imaging,Nanotechnology, 2011, 22(24): 245604.