[1]王宁,蒋凤英,金贻荣,等. 超导量子干涉仪及其在低场核磁共振及成像中的应用[J].中国材料进展,2013,(9):541-549.[doi:10.7502/j.issn.1674-3962.2013.09.04]
 Wang Ning,Jiang Fengying,Jin Yiyong,et al. Superconducting Quantum Interference Device and Its Application in Low-field Nuclear Magnetic resonance&Imaging [J].MATERIALS CHINA,2013,(9):541-549.[doi:10.7502/j.issn.1674-3962.2013.09.04]
点击复制

 超导量子干涉仪及其在低场核磁共振及成像中的应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第9期
页码:
541-549
栏目:
特约研究论文
出版日期:
2013-09-30

文章信息/Info

Title:
 

Superconducting Quantum Interference Device and Its Application in Low-field Nuclear Magnetic resonance&Imaging

作者:
 王宁蒋凤英金贻荣李绍邓辉田野任育峰郑东宁
 (中国科学院物理研究所,北京100190)
Author(s):
 Wang Ning Jiang Fengying Jin Yiyong Li Shao Deng Hui Tian Ye RenYuyeng ZhengDongning
 (Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
关键词:
  COLOR: #000000 FONT-FAMILY: 宋体">超导量子干涉仪低场核磁共振核磁共振成像磁性纳米粒子
DOI:
10.7502/j.issn.1674-3962.2013.09.04
文献标志码:
A
摘要:
 超导量子干涉仪利用约瑟夫森结宏观量子干涉效应,是一种具有超高灵敏度的磁通探测器件。本文对超导量子干涉仪的基本原理及其在低场核磁共振/成像技术中的应用进行了简要介绍,并报道了我们在这方面的主要研究成果。搭建了一套低场核磁共振及成像系统并获得具有较高信噪比的水样品1H质子NMR谱及三氟乙醇的纯J-耦合谱,同时还测到了清晰的自旋回波信号。在此基础上,采用直接背投影重建方法,尝试并成功获得了水样品和生物样品的一维及二维核磁共振像。采用8nm粒径的超顺磁Fe3O4磁性纳米粒子作为对比增强剂,研究了磁性纳米粒子对1H核自旋纵向弛豫时间T1的影响,据此演示了磁性纳米粒子T1加权对比度增强成像实验,所得二维核磁共振像随极化时间的不同显示出显著的对比度变化。
Abstract:
 Superconducting Quantum Interference Device (SQUID) is a kind of ultra-sensitive flux detector based on macroscopic quantum interferencephenomenon of Josephson junctions. The principle of SQUID and advantages of its application in low-field nuclear magnetic resonance (NMR) &imaging (MRI) technologies are introduced, and some important experimental results are reported here. We built a low-field NMR&MRI system and obtained highly improved 1H proton FID&Spin echo spectra. Pure J-coupling spectrum of 2,2,2-Trifluoroethyl was also measured and agreed well with high-field NMR results. In addition, we tried and successfully obtained 1D and 2D MRI images of water phantoms and bio-samples. The influence of 8nm Fe3O4 magnetic nanoparticles on longitudinal relaxation time of water was studied. Based on this property, we illustratedT1-contrast enhanced 2D imaging of water phantoms by using magnetic nanoparticles, which show evident contrast variation under different pre-polarization times.

参考文献/References:

[1]Levenson-Falk, E. M., Vijay, R., Antler, N. et al, A dispersive nanoSQUID magnetometer for ultra-low noise, high bandwidth flux detection. 2013, arXiv:1301.3184.

[2] J.Clarke, A.I.Braginski, The SQUID Handbook: Fundamentals and Technologyof SQUIDs and SQUID Systems, Wiley-VCH, 1st edition, 2004.

[3] Y. NakayaandH.Mori, Magnetocardiography, Clin.Phys. Physiol.Meas., 1992, 13:191-229.

[4] Koch, H., Recent advances in magnetocardiography, Journal of Electrocardiology, 2004, 37:117-122.

[5] Hämäläinen, M., Hari, R., Ilmoniemi, R. J., et al, Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65: 413–497.

[6] Vrba J.,Magnetoencephalography:Theartoffinding aneedleinahaystack,PhysicaC,2002, 368: 1-9.

[7] McDermott, R. TrabesingerA. H., MückM., et al. Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields. Science, 2002, 295: 2247–2249.

[8] Clarke, J., Hatridge, M. andMößle, M., SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields. Annu.Rev. Biomed. Eng. 2007, 9:389–413.

[9] Qiu, L. Q. Zhang Y., Krause H. J., et al. High-Performance Low-Field NMR Utilizing a High-Tcrf SQUID. IEEE Trans. Appl. Supercond. 2009, 19: 831–834.

[10] Yang, H.C., Liao S. H., HorngH. E., et al. Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device. Applied Physics Letters, 2002, 88: 252505.

[11] Yang H.C., Horng H.E., Yang S. Y., et al, Advances in biomagnetic research using high- Tc superconducting quantum interference devices. Superconductor Science and Technology 2009, 22:093001.

[13] Krause, H.J., Wolf W., GlaasW., et al. SQUID array for magnetic inspection of prestressed concrete bridges. Physica C: Superconductivity 2002, 368: 91–95.

[14] Hohmann, R., MausM., LomparskiD., et al. Aircraft wheel testing with machine-cooled HTS SQUID gradiometer system. IEEE Transactions on Applied Superconductivity 1999, 9: 3801–3804.

[15] Kirtley, J. R., KetchenM. B., TsueiC. C., et al. Design and applications of a scanning SQUID microscope. IBM Journal of Research and Development 1995, 39: 655–668.

[16] Drung, D., High-Tc and low-Tc dc SQUID electronics. Supercond. Sci. Technol. 2003, 16: 1320.

[17] Greenberg, Y. S. Application of superconducting quantum interference devices to nuclear magnetic resonance. Rev. Mod. Phys. 1998, 70: 175–222.

[18] Kumar, S., Avrin, W. F. andWhitecotton, B. R. NMR of room temperature samples with a flux-locked dc SQUID. IEEE Transactions on Magnetics 1996, 32: 5261–5264.

[19] W. H. Bergmann , Processing of the 3rd Internatinal Workshop on Biomagntism . 1981,535-548

[20] 李绍,任育峰,田野 et al. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究, 物理学报 2009,58:5744–5749.

[21] Liao S.H., Yang H. C.,Horng H. E., et al. Sensitive J-coupling spectroscopy using high-Tc superconducting quantum interference devices in magnetic fields as low as microteslas. Supercond. Sci. Technol. 2009, 22: 045008.

[22]Wang N., Jin Y. R., Li S., et al., Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID, Journal of Physics Conference Series, 2012, 400(5): 052041.

[23] 王宁, 金贻荣, 邓辉, et al.,基于高温超导量子干涉仪的超低场核磁共振成像研究,物理学报,2012, 61(21):213302.

[24] HuF. Q., JiaQ. J., LiY. L., et al., Facile synthesis of ultra-small PEGylated iron oxide nanoparticles for dual-contrast T1-and T2-weighted magnetic resonance imaging,Nanotechnology, 2011, 22(24): 245604.

更新日期/Last Update: 2013-10-10