[1]孙巧艳,杜勇,刘立斌,等. 高性能钛合金的关键“基因”及高通量实验与计算技术的应用[J].中国材料进展,2018,(04):057-63.[doi:10.7502/j.issn.1674-3962.2018.04.07]
SUN Qiaoyan,DU Yong,LIU Libin,et al.Key Material Genome of Titanium Alloys and Application of High Throughput Experiment and Computation[J].MATERIALS CHINA,2018,(04):057-63.[doi:10.7502/j.issn.1674-3962.2018.04.07]
点击复制
高性能钛合金的关键“基因”及高通量实验与计算技术的应用
(
)
中国材料进展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期数:
-
2018年第04期
- 页码:
-
057-63
- 栏目:
-
前沿综述
- 出版日期:
-
2018-04-30
文章信息/Info
- Title:
-
Key Material Genome of Titanium Alloys and Application of High Throughput Experiment and Computation
- 作者:
-
孙巧艳1; 杜勇2; 刘立斌2; 胡青苗3; 肖林1; 孙军1
-
1.西安交通大学 金属材料强度国家重点实验室,陕西 西安 710049 2.中南大学 粉末冶金国家重点实验室,湖南 长沙 410083 3.中国科学院金属研究所 沈阳材料科学国家实验室,辽宁 沈阳 110016
- Author(s):
-
SUN Qiaoyan1; DU Yong2; LIU Libin2; HU Qingmiao3; XIAO Lin1; SUN Jun1
-
1.State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China 2.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang 110016, China
-
- 关键词:
-
钛合金; 高通量实验与计算; 微观组织; 力学性能; 材料基因
- Keywords:
-
titanium alloys; high throughput experiments and computation; microstructure; mechanical properties; materials genome
- DOI:
-
10.7502/j.issn.1674-3962.2018.04.07
- 文献标志码:
-
A
- 摘要:
-
加快高性能钛合金的研发速度、降低研发成本对我国高端装备制造至关重要。作为关键结构材料,强度、塑性与韧性是保障钛合金构件安全运行的关键力学性能指标。通过高通量计算可预测合金的模量、比热、热膨胀系数等多种物理性能指标,但是对于强度、塑性与韧性等力学性能指标尚缺少预测模型和公式,原因是力学性能间接依赖合金的化学成分,直接影响力学性能的因素是合金的微观组织。高性能钛合金的关键“基因”是成分、相/组织结构与晶体缺陷。高通量计算和扩散多元节建立合金成分与相的对应关系,相场动力学计算与模拟实现对相与微观组织演化的预测,通过微纳尺度力学性能测试技术获得微观组织结构的力学性能数据。期望通过以上各环节研究结果与数据的有机整合,建立钛合金成分、相与微观组织、力学性能数据库,有助于提升高性能钛合金的研发速度,满足我国关键技术领域对先进钛合金的需求。
- Abstract:
-
To accelerate researching newtype titanium alloys with improved mechanical properties and to lower cost at the same time are very important for the advanced equipments of our country. As structural material, strength, ductility and toughness are key factors for performance of structural parts. Some physical properties, such as elastic modulus, heat conductivity, diffusion coefficient, thermal expansion coefficient and specific heat, have been calculated or measured with highthroughput computation and experiments. However, mechanical properties, such as strength, ductility and toughness, cannot be calculated with computational methods due to lack of models and enough data. The mechanical properties are much more dependent on microstructures than compositions. Therefore, the key genes for advanced titanium alloys are compositions, phases/microstructures and defects of crystals. The relationship between chemical composition and phase can be founded with firstprinciples calculation, and dependence of phase on composition can be measured with diffusionmultiple approach efficiently. Microstructural evolution can be predicted with phasefield models. The mechanical properties of individual unit of microstructures can be measured with nanomechanical methods, such as nano indentation and compressive or tensile methods. The above results and data should be integrated into database for titanium alloys and be used to accelerate researching newtype titanium alloys to meet great needs of advanced titanium alloys in key industrial fields of our country.
更新日期/Last Update:
2018-05-08