[1]张旭明,马庆爽,张海莲,等.新型钴基高温合金成分设计的研究进展[J].中国材料进展,2024,43(03):229-237.[doi:10.7502/j.issn.1674-3962.202107062]
 ZHANG Xuming,MA Qingshuang,ZHANG Hailian,et al.Research Progress on Composition Design of Novel Cobalt Based Superalloy[J].MATERIALS CHINA,2024,43(03):229-237.[doi:10.7502/j.issn.1674-3962.202107062]
点击复制

新型钴基高温合金成分设计的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第03期
页码:
229-237
栏目:
出版日期:
2024-03-30

文章信息/Info

Title:
Research Progress on Composition Design of Novel Cobalt Based Superalloy
文章编号:
1674-3962(2024)03-0230-08
作者:
张旭明马庆爽张海莲毕长波张会杰李会军高秋志
1.东北大学秦皇岛分校资源与材料学院,河北 秦皇岛 066004 2.东北大学 轧制技术及连轧自动化国家重点实验室,辽宁 沈阳 110819 3.秦皇岛市道天高科技有限公司,河北 秦皇岛 066000 4.东北大学秦皇岛分校控制工程学院,河北,秦皇岛 066004 5.天津大学材料科学与工程学院,天津 300354
Author(s):
ZHANG Xuming MA Qingshuang ZHANG Hailian BI ChangboZHANG Huijie LI Huijun GAO Qiuzhi
1. School of Resources and Materials,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China 2. State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China 3. Qinhuangdao Daotian High Technology Co.,Ltd.,Qinhuangdao 066000,China 4. School of Control Engineering,Northeastern University at Qinhuangdao Qinhuangdao 066004,China 5. School of Materials Science and Engineering,Tianjin University,Tianjin 300354,China
关键词:
钴基高温合金成分设计γ′相组织性能蠕变
Keywords:
Co-based superalloycomposition designγ′ phasemicrostructure and propertiescreep
分类号:
TG146.1TG146.1+6
DOI:
10.7502/j.issn.1674-3962.202107062
文献标志码:
A
摘要:
传统钴基高温合金的强化机制为固溶强化和碳化物强化,弱于有序γ′相沉淀强化的镍基高温合金的强化效果,日本学者发现了有序γ′相强化的Co-Al-W系新型钴基高温合金,其强化效果明显优于传统钴基高温合金。由于新型钴基高温合金具有较传统镍基高温合金更高的承温能力以及更加优异的高温抗蠕变性能和抗氧化性能,因此被认为是最具潜力的航空发动机热端材料之一,近年来得到迅速发展。基于国内外学者对新型钴基高温合金的研究成果,系统总结多种合金元素(如Ta,Ti,W和Nb等)对新型钴基高温合金组织和性能的影响。在组织方面,总结合金元素对合金相变温度、γ′相的体积分数及形态、γ′相的尺寸、γ/γ′两相晶格错配度和有害相的影响;在性能方面,总结合金元素对合金抗氧化性能、力学性能及抗蠕变性能的影响,以期为新型钴基高温合金的成分设计提供参考。最后对新型钴基高温合金成分的高效率设计进行展望。
Abstract:
The strengthening mechanism of traditional cobaltbased superalloys is solid solution strengthening and carbide strengthening whereas, both solid solution strengthening and carbide strengthening are weaker than that of nickel-based superalloys with ordered γ′ precipitation. Japanese scholars discovered a novel type of Co-Al-W superalloys with ordered γ′ phase strengthening, and its strengthening effect is significantly better than that of traditional cobalt-based superalloys. Compared with traditional nickel-based superalloys, the novel cobalt-based superalloys have higher temperature capability, more excellent high temperature creep resistance and oxidation resistance, therefore, the novel cobalt-based superalloys are considered to be the most potential aeroengines hot side materials and have developed rapidly in recent years. In this review, based on the research results of the novel cobalt-based superalloys by scholars at home and abroad, the effects of various alloying elements (such as Ta, Ti, W, Nb and so on) on the structure and properties of novel cobaltbased superalloys were systematically summarized. In terms of microstructure, the effects of alloying elements on transformation temperature, volume fraction and morphology of γ′ phase, the size of γ′ phase, the lattice misfit of γ/γ′ two phase and the harmful phase were summarized. Meanwhile, in terms of properties, the effects of alloying elements on oxidation resistance, mechanical property and creep resistance of the alloy were also discussed, it is expected to provide reference for the composition design of novel cobalt-based superalloys. Finally, the high efficiency design of novel cobalt-based superalloys are prospected.

参考文献/References:

[1] 杜金辉, 吕旭东, 董建新, 等. 金属学报[J], 2019, 55 (09): 1115-1132.
DU J H, LV X D, DONG J X, et al. Acta Metallurgica Sinica[J], 2019, 55(09): 1115-1132.
[2] LIU Z, GAO Q, ZHANG H, et al. Materials Science and Engineering: A[J], 2019, 755: 106-115.
[3] JIANG Y, GAO Q, ZHANG H, et al. Materials Science and Engineering: A[J], 2019, 748: 161-172.
[4] JIANG J, LIU Z, GAO Q, et al. Materials Science and Engineering: A[J], 2020, 797: 140219.
[5] 刘健. 元素对γ’沉淀强化型钴基高温合金组织及力学性能的影响[D]. 合肥:中国科学技术大学, 2019.
(LIU J. Effects of Alloying Elements on the Microstructure and Mechanical Behavior of γ′-Strengthed Co-base Superalloys[D]. Hefei: University of science and technology of China, 2019.)
[6] 刘兴军, 陈悦超, 卢勇, 等. 金属学报[J], 2020, 56 (01): 1-20.
LIU X J, CHEN Y C, LU Y, et al. Acta Metallurgica Sinica[J], 2020, 56(01): 1-20.
[7] KLEIN L, SHEN Y, KILLIAN M S, et al. Corrosion Science[J], 2011, 53 (9): 2713-2720.
[8] JINSHAN H, MIN Z, LONGFEI L, et al. Materials Letters[J], 2020, 262 (C): 127042.
[9] SATO J, OMORI T, OIKAWA K, et al. Science[J], 2006, 312 (5770): 90-91.
[10] SUZUKI A. Acta Materialia[J], 2008, 56 (6): 1288-1297.
[11] WALTER C, HALLSTEDT B, WARNKEN N. Materials Science and Engineering: A[J], 2005, 397 (1-2): 385-390.
[12] PARK H, Li C, JAKUS A E, et al. Scripta Materialia[J], 2020, 188: 146-150.
[13] SUZUKI A, INUI H, POLLOCK T M. Annual Review of Materials Research[J], 2015, 45 (1): 345-368.
[14] BAUER A, NEUMEIER S, PYCZAK F, et al. Superalloys[J] 2012, 2012: 695-703.
[15] AKANE S, C. D G, M. P T. Scripta Materialia[J], 2006, 56 (5): 385-388.
[16] LU S, ANTONOV S, Li L, et al. Metallurgical and Materials Transactions A[J], 2018, 49 (9): 4079-4089.
[17] SHI L, YU J J, CUI C Y, et al. Materials Science & Engineering A[J], 2015, 620: 36-43.
[18] BOCCHINI P J, LASS E A, MOON K-W, et al. Scripta Materialia[J], 2013, 68 (8): 563-566.
[19] KOBAYASHI S, TSUKAMOTO Y, TAKASUGI T, et al. Intermetallics[J], 2009, 17 (12): 1085-1089.
[20] LASS E A, WILLIAMS M E, CAMPBELL C E, et al. Journal of Phase Equilibria and Diffusion[J], 2014, 35 (6): 711-723.
[21] LASS E A, GRIST R D, WILLIAMS M E. Journal of Phase Equilibria and Diffusion[J], 2016, 37 (4): 387-401.
[22] CHEN Y, WANG C, RUAN J, et al. Acta Materialia[J], 2019, 170: 62-74.
[23] LLEWELYN S C H, CHRISTOFIDOU K A, ARAULLO-PETERS V J, et al. Acta Materialia[J], 2017, 131: 296-304.
[24] BANTOUNAS I, GWALANI B, ALAM T, et al. Scripta Materialia[J], 2019, 163: 44-50.
[25] BAUER A, NEUMEIER S, PYCZAK F, et al. Scripta Materialia[J], 2010, 63 (12): 1197-1200.
[26] OOSHIMA, M., TANAKA, et al. Journal of Alloys & Compounds[J], 2010, (1): 71-78.
[27] POLLOCK T M, DIBBERN J, TSUNEKANE M, et al. Jom[J], 2010, 62 (1): 58-63.
[28] LASS E A. Metallurgical and Materials Transactions A[J], 2017, 48 (5): 2443-2459.
[29] CHEN M, WANG C Y. Journal of Applied Physics[J], 2010, 107 (9): 093705
[30] JIN M, MIAO N, ZHAO W, et al. Computational Materials Science[J], 2018, 148: 27-37.
[31] RUAN J, XU W, YANG T, et al. Acta Materialia[J], 2020, 186: 425-433.
[32] CHUNG D-W, TOININ J P, LASS E A, et al. Journal of Alloys and Compounds[J], 2020, 832: 154790.
[33] ZHANG Y, FU H, ZHOU X, et al. Intermetallics[J], 2019, 112: 106543.
[34] ZHANG Y, FU H, ZHOU X, et al. Materials Science & Engineering A[J], 2018: 265-273.
[35] MAKINENI S K, NITHIN B, CHATTOPADHYAY K. Scripta Materialia[J], 2015, 98: 36-39.
[36] LI W, LI L, ANTONOV S, et al. Journal of Alloys and Compounds[J], 2020, 826: 154182.
[37] QU S, LI Y, HE M, et al. Materials Science and Engineering: A[J], 2019, 761: 138034.

备注/Memo

备注/Memo:
收稿日期:2021-07-29修回日期:2021-11-25 基金项目:国家自然科学基金钢铁联合研究基金重点项目(U1960204);国家自然科学基金面上项目(51871042,52171107);中央高校基本科研业务费专项资金项目(N2023026) 第一作者:张旭明,男,1998年生,硕士研究生 通讯作者:高秋志,男,1981年生,副教授,硕士生导师, Email:neuqgao@163.com 马庆爽,女,1989年生,讲师,硕士生导师, Email:maqsneuq@163.com
更新日期/Last Update: 2023-09-28