[1]杜小娟,刘晶,董海亮,等.GaN基绿光激光二极管发展现状及趋势[J].中国材料进展,2023,42(07):597-604.[doi:10.7502/j.issn.1674-3962.202108006]
 DU Xiaojuan,LIU Jing,DONG Hailiang,et al.Development Status and Trend of GaN-Based Green Laser Diode[J].MATERIALS CHINA,2023,42(07):597-604.[doi:10.7502/j.issn.1674-3962.202108006]
点击复制

GaN基绿光激光二极管发展现状及趋势()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第07期
页码:
597-604
栏目:
出版日期:
2023-07-31

文章信息/Info

Title:
Development Status and Trend of GaN-Based Green Laser Diode
文章编号:
1674-3962(2023)07-0597-08
作者:
杜小娟1刘晶2董海亮3贾志刚3张爱琴4梁建1许并社3
1. 太原理工大学材料科学与工程学院, 山西 太原 030024 2. 航天科工防御技术研究试验中心, 北京 100854 3. 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024 4. 太原理工大学轻纺工程学院, 山西 太原 030024 5. 陕西科技大学 材料原子·分子科学研究所, 陕西 西安 710021
Author(s):
DU Xiaojuan1 LIU Jing2 DONG Hailiang3 JIA Zhigang3ZHANG Aiqin4 LIANG Jian1 XU Bingshe3
1. School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2. Aerospace Science and Technology Defense Technology Research and Experimental Center, Beijing 100854, China 3. Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education,Taiyuan University of Technology, Taiyuan 030024, China 4. College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
GaN基绿光激光二极管输出功率光束质量可靠性外延结构
Keywords:
GaN-based green laser diodes output power beam quality reliability epitaxial structure
分类号:
TN248.4
DOI:
10.7502/j.issn.1674-3962.202108006
文献标志码:
A
摘要:
由于氮化镓(GaN)基半导体材料在外延生长技术、外延结构设计方面取得了显著的成果,GaN基绿光激光二极管已广泛应用在激光显示、光纤维通讯、生物医疗器件和光数据存储等领域。综述了绿光激光二极管的发展历程及研究现状;重点详述了导致GaN基绿光激光二极管输出功率低、光束质量差及可靠性差等问题的关键因素及解决方法;探讨了绿光波段量子阱的高In组分导致GaN基激光二极管光电性能骤降方面的问题;总结了制备高性能GaN基绿光激光二极管所面临的挑战仍是外延材料质量差、载流子泄漏严重和强极化效应引起的激射效率低等难题。同时,展望了GaN基绿光激光二极管向智能化和模块化方向发展的趋势以及研究重点。
Abstract:
Since the obvious progress of GaN-based semiconductor materials in epitaxial growth and epitaxial structure design, GaN-based green laser diode has been widely used in laser displays, optical fiber communication, biomedical instruments, optical data storage and other fields. The development and research progress of green laser diode were reviewed in this work. The key factors affecting the low output power, poor beam quality and poor reliability of GaN based green laser diodes and their solutions were described in detail. The photoelectric performance droop for GaN-based green laser diode with high In composition in quantum well were discussed. The challenges of achieving high performance green laser diode are poor quality of epitaxied materials, serious carrier leakage and low radiation recombination caused by strong polarization effect were summarized. The research emphasis and the future trend of smarter and more modular of GaN-based green laser diode were prospected.

参考文献/References:

\[1\]NAKAMURA S, SENOH M, NAGAHAMA S I, et al. Japanese Journal of Applied Physics\[J\], 1996, 35 (Part 2, No1B): 74-76. \[2\]MANCHEE C P K,MOLLER J,MILLER R J D. Optics Communications\[J\],2019, 437: 6-10. \[3\]NAKAMURA S. IEEE Journal of Selected Topics in Quantum Electronics\[J\],1997, 3(3): 712-718. \[4\]JIANG L R, LIU J P, TIAN A Q, et al. Journal of Semiconductors\[J\], 2016, 37(11): 11101. \[5\]MIYOSHI T, MASUI S, OKADA T, et al. Applied Physics Express\[J\], 2009, 2(6): 062201. \[6\]MIYOSHI T, MASUI S, OKADA T, et al. Physica Status Solidi\[J\], 2010, 207(6): 1389-1392. \[7\]NAGAHAMA S, MIYOSHI T, KASAHARA D, et al. Wattclass AlInGaN Blue and Green Laser Diodes\[R\]. Yokohama: The 2nd Laser Display Conference, 2013. \[8\]QUEREN D, AVRAMESCU A, BREIDENASSEL A, et al. Applied Physics Letters\[J\], 2009, 94(8): 081119. \[9\]LUTGEN S, AVRAMESCU A, LERMER T, et al. Physica Status Solidi(a)\[J\], 2010, 207(6): 1318-1322. \[10\]AVRAMESCU A, LERMER T, MULLER J, et al. Applied Physics Express\[J\], 2010, 3(6): 61003. \[11\]VIERHEILIG C, EICHLER C, TAUTZ S, et al. Conference on Novel InPlane Semiconductor Lasers XI\[R\]. San Francisco: Proceedings of SPIE, 2012, 8277:13. \[12\]HAGER T, STRAUB U, EICHLER C, et al. Conference on Novel InPlane Semiconductor Lasers XII\[R\]. San Francisco: Proceedings of SPIE, 2013, 8640:86400G. \[13\]ZHANG M, BHATTACHARYA P, GUO W. Applied Physics Letters\[J\], 2010, 97: 011103. \[14\]FROST T, BANERJEE A, SUN K, et al. IEEE Journal of Quantum Electronics\[J\], 2013, 49: 923-931. \[15\]TIAN A, LIU J, ZHANG L, et al. Optics Express\[J\], 2017, 25(1): 415-421. \[16\]YUSUKE Y, MASAHIRO A, YOHEI E, et al. Applied Physics Express\[J\], 2009, 2(9): 092101. \[17\]MASAHIRO A, YUSUKE Y, YOHEI E, et al. Applied Physics Express\[J\], 2010, 3(12): 121001. \[18\]YANASHIMA K, NAKAJIMA H, TASAI K, et al. Applied Physics Express\[J\], 2012, 5(8): 82103. \[19\]ANURRAG T, ROBERT M F, KATHRYN M K, et al. Applied Physics Express\[J\], 2010, 3(1): 011002. \[20\]LIN Y D, YAMAMOTO S, HUANG C Y, et al. Applied Physics Express\[J\], 2010, 3(8): 082001. \[21\]HARDY M T, WU F, HSU P S, et al. Journal of Applied Physics\[J\], 2013, 114(18): 183101. \[22\]JAMES W R, MATHEW C S, CHRISTIANE P, et al. Applied Physics Express\[J\], 2010, 3(11): 112101. \[23\]SCHMIDT M C, POBLENZ C, CHANG Y C, et al.Conference on the Laser Technology for Defense and Security VII\[R\]. Orlando FL: Proceedings of SPIE, 2011, 8039: 80390D. \[24\]SIZOV D, HEBERLE A P, VISOVSKY N J, et al. Applied Physics Letters\[J\], 2011, 99(7): 41117. \[25\]OKAMOTO K, KASHIWAGI J, TANAKA T, et al. Applied Physics Letters\[J\], 2009, 94(7): 71105. \[26\]TIAN A, LIU J, ZHANG L, et al. Applied Physics Express\[J\], 2017, 10: 012701. \[27\]TIAN A, LIU J, ZHANG L, et al. Applied Physics Letters\[J\], 2017, 111: 112102. \[28\]TIAN A, LIU J, ZHANG L, et al. Physics Status Solidi C\[J\], 2016, 13: 245-247. \[29\]TIAN A, LIU J, IKEDA M, et al. Applied Physics Express\[J\], 2015, 8: 051001. \[30\]HU L,REN X Y,LIU J P,et al. Photonics Research\[J\], 2020,8(3):279-285. \[31\]BHATIA V, GREGORSKI S J, PIKULA D, et al. Information Display\[J\], 2009, 25(3): 31. \[32\]Lasers & Electrooptics Society\[C\]. Sydney: Leos the Meeting of the IEEE, 2005. \[33\]HAYASHI I, PANISH M B, FOY P W, et al. Applied Physics Letters\[J\], 1970, 17(3): 109-111. \[34\]BACHMANN F, POPRAWE R, LOOSEN P. Proceedings of SPIEThe International Society for Optical Engineering\[J\], 2007, 3888: 535-536. \[35\]李方直,胡磊,田爱琴,等.人工晶体学报\[J\],2020,65(11):53-69. LI F Z, HU L, TIAN A Q, et al. Journal of Synthetic Crystals\[J\], 2020, 65(11): 53-69. \[36\]HALL R N, FENNER G E, KINGSLEY J D, et al. Physical Review Letters\[J\], 1962, 9(9):366-368. \[37\]IGA K, KINOSHITA S, KOYAMA F. Electronics Letters\[J\], 1987, 23(3):134-136. \[38\]BANERJEE A, FROST T, JAHANGIR S, et al. Journal of Crystal Growth\[J\], 2013, 378: 566-570. \[39\]LIANG F, ZHAO D, JIANG D, et al. Optics and Laser Technology\[J\], 2017, 97: 284-289. \[40\]LIANG F, ZHAO D, JIANG D, et al. Superlattices and Microstructures\[J\], 2017, 102: 484-489. \[41\]YANG J, ZHAO D G, JIANG D S, et al. IEEE Photonics Journal\[J\], 2017, 2(9): 2300108. \[42\]陈伟华,廖辉,胡晓东,等. 光谱学与光谱分析\[J\],2009,29(6):1441-1444. CHEN W H, LIAO H, HU X D, et al. Spectroscopy and Spectral Analysis\[J\], 2009, 29(26): 1441-1444. \[43\]CHENG L W, CAO C R, MA J, et al. Journal of Applied Physics\[J\], 2018, 123(22): 223140. \[44\]TELEGIN K Y, LADUGIN M A, ANDREEV A Y, et al. Quantum Electronics\[J\], 2020, 50(5): 489-495. \[45\]ZHOU M, LIANG F, ZHAO D G, et al. Journal of Material Science: Material in Electronics\[J\], 2020, 31(8): 5814-5819. \[46\]WEN P Y, ZHANG S M, LIU I P, et al. Journal of Applied Physics\[J\], 2016, 119(21): 213107. \[47\]NAKAMURA S, SENOH M, NAGAHAMA S, et al. Applied Physics Letters\[J\],1997,70(11):1417-1419. \[48\]ZHANG Y, KAO T T, LIU J, et al. Journal of Applied Physics\[J\], 2011, 109(8): 312-314. \[59\]YANG W, LI D, LIU N Y, et al. Applied Physics Letters\[J\], 2012, 100(3): 176-178. \[50\]USMAN M, MUNSIF M, ANWAR A R. Optical and Quantum Electronics\[J\], 2020, 52(6): 320. \[51\]KUO Y K, LU Y C, TSAI M C, et al. Proceedings of SPIEthe International Society for Optical Engineering\[J\], 2009: 7211. \[52\]CHIO S, JI M H, KIM J, et al. Applied Physics Letters\[J\], 2012, 101(16): 897. \[53\]CHEN J R, LEE C H, KO T S, et al. Journal of Lightwave Technology\[J\], 2008, 26(3): 329-337. \[54\]LEE S N, CHO S Y, RYU H Y, et al. Applied Physics Letters\[J\], 2006, 88(11): 111101. \[55\]ZHANG D, LIU Z C, HU X D, et al. Semiconductor Science and Technology\[J\], 2009, 24(4): 045003. \[56\]PIPREK J, LI S. Applied Physics Letters\[J\], 2013, 102(2): 023510. \[57\]LIANG F, ZHAO D G, JIANG D S, et al. Journal of Alloys and Compounds\[J\], 2018, 731: 243-247. \[58\]LE L C, ZHAO D G, JIANG D S, et al. Optical Society of America\[J\], 2014, 22(10): 11392-11398. \[59\]HUANG C Y, LIN Y D, TYAGI A, et al. Applied Physics\[J\], 2010, 107(2): 023101. \[60\]LIANG F, ZHAO D, JIANG D, et al. Superlattices and Microstructures\[J\], 2019, 132: 106153. \[61\]HARDY M T, FEEZELL D F, DENBAAR S P, et al. Materials Today\[J\], 2011, 14(9): 408-415. \[62\]PERLIN P, HOLC K, SARZYNSKI M, et al. Applied Physics Letters\[J\], 2009, 95(26): 261108. \[63\]STANCZYK S, CZYSZANOWSKI T, KAFAR A, et al. Applied Physics Letters\[J\], 2013, 102(15): 151102. \[64\]DANG S H, LI C X, LU M C, et al. Journal for Light and Electronoptic\[J\], 2018, 157: 1350-1356. \[65\]OKAMOTO K, TANAKA T, KUBOTA M, et al. Applied Physics Express\[J\], 2008, 1: 011102-3. \[66\]田爱琴. GaN基绿光激光器的MOCVD生长和表征\[D\]. 北京:中国科学院大学,2017. TIAN A Q. MOCVD Growth and Characterization of GaN Based Green Laser\[D\]. Beijing: University of Chinese Academy of Sciences, 2017. \[67\]LERMER T, SCHILLGALIES M, BREIDENASSEL A, et al. Physics Status Solidi A\[J\], 2010, 207(6): 1328-1331. \[68\]SEBASTIAN J, BEISTER G, BUGGE F, et al. IEEE Journal of Selected Topics in Quantum Electronics\[J\], 2001, 7(2): 334-339. \[69\]LI J J, CUI B F, DENG J, et al. Chinese Journal of Lasers\[J\], 2013, 40(11): 102011. \[70\]刘梦涵,崔碧峰,何新,等. 中国激光\[J\],2016,43(5): 1-6. LIU M H,CUI B F,HE X,et al. Chinese Journal of Lasers\[J\], 2016, 43(5): 1-6. \[71\]QIU B C, KOWALSKI O P, MCDOUGALL S, et al. IEEE Photonics Journal\[J\], 2009, 1(3): 172-177. \[72\]MALAG A, SOBAZAK G, DBROWSKA E, et al. AIMS Electronics and Electrical Engineering\[J\], 2019, 3(4): 370-381. \[73\]ABBASI S P, MADDIE M H. Optics and Laser Technology\[J\], 2019, 116: 155-161. \[74\]张立群,张书明,江德生,等. 红外与激光工程\[J\],2009,38(1):42-44. ZHANG L Q,ZHANG S M,JIANG D S,et al. Infrared and Laser Engineering\[J\], 2009, 38(1): 42-44. \[75\]LAN T, ZHOU G Z, LI Y, et al. Optical and Quantum Electronics\[J\], 2018, 50(12): 434: 1-11. \[76\]陈良惠,杨国文,刘育衔. 中国激光\[J\],2020,47(5):0500001. CHEN L H, YANG G W, LIU Y X. Chinese Journal of Lasers\[J\], 2020, 47(5): 0500001. \[77\]孟雪,宁永强,张建伟,等. 激光与光电子学进展\[J\], 2019, 56(18): 180001. MENG X, NING Y Q, ZHANG J W, et al. Laser & Optoelectronics Progress\[J\], 2019, 56(18): 180001. \[78\]曹玉莲. 高功率半导体量子阱激光器的可靠性研究\[D\]. 长春:中国科学院长春光学精密机械与物理研究所,2003:1-52. CAO Y L. Reliability Study of High Power Semiconductor Quantum Well Lasers\[D\]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003: 1-52. \[79\]TRIVELLIN N, MENEGHINI M, ZANONI E, et al. Physics Status Solidi\[J\], 2010,207(1): 41-44. \[80\]SANTI C D, MENEGHINI M, MARIOLI M, et al. Microelectronics Reliability\[J\], 2014, 54(9): 2147-2150. \[81\]XIU H X, XU P, WEN P Y, et al. Superlattices and Microstructures\[J\], 2020, 142: 106517. \[82\]孙天宇, 夏明俊, 乔雷. 激光与光电子学进展\[J\], 2021,58(19):37-49. SUN T Y, XIA M J, QIAO L. Laser & Optoelectronics Progress\[J\], 2021, 58(19): 37-49.

备注/Memo

备注/Memo:
收稿日期:2021-08-08修回日期:2022-01-11 基金项目:国家自然科学基金项目(61904120,21972103);国家重点研发计划项目(2016YFB0401803);山西省基础研究项目(201901D111111) 第一作者:杜小娟,女,1997年生,硕士 通讯作者:董海亮,男,1984年生,高级实验师,硕士生导师, Email: dhltyut@163.com 梁建,男,1964年生,副教授,硕士生导师, Email:liangj1220@126.com
更新日期/Last Update: 2023-09-08