[1]魏鑫,李昌永,赵兴东,等.TC17钛合金盘锻件的工艺优化及组织性能分析[J].中国材料进展,2023,42(11):918-923.[doi:10.7502/j.issn.1674-3962.202304022]
 WEI Xin,LI Changyong,ZHAO Xingdong,et al.Analysis of Microstructure-Properties and Process Optimization of Disk Forging of TC17 Alloy[J].MATERIALS CHINA,2023,42(11):918-923.[doi:10.7502/j.issn.1674-3962.202304022]
点击复制

TC17钛合金盘锻件的工艺优化及组织性能分析()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第11期
页码:
918-923
栏目:
出版日期:
2023-11-30

文章信息/Info

Title:
Analysis of Microstructure-Properties and Process Optimization of Disk Forging of TC17 Alloy
文章编号:
1674-3962(2023)11-0918-06
作者:
魏鑫1李昌永1赵兴东1徐建伟2曾卫东2
1. 中国航发沈阳黎明航空发动机有限责任公司,辽宁 沈阳 110043 2. 西北工业大学 凝固技术国家重点实验室, 陕西 西安 710072
Author(s):
WEI Xin1 LI Changyong1 ZHAO Xingdong1 XU Jianwei2 ZENG Weidong2
1. AECC Shenyang Liming Aero-Engine Co., LTD., Shenyang 110043, China 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
TC17合金盘锻件模拟微观组织力学性能
Keywords:
TC17 alloy disk forging simulation microstructure mechanical property
分类号:
TG319
DOI:
10.7502/j.issn.1674-3962.202304022
文献标志码:
A
摘要:
为了提高发动机转动盘件的服役性能,增加性能富裕度,对某发动机用TC17钛合金盘锻件原始固有方案的成形过程、微观组织、力学性能进行分析,发现原始方案的预制坯设计不合理,导致盘锻件的等效应变和组织分布不均匀,并使得盘锻件的塑性和低周疲劳性能偏低。针对这一问题,采用有限元模拟进行预制坯结构优化,进一步提升盘锻件的变形均匀性和组织性能水平。经优化后,锻件变形的不均匀性得到明显改善,而且锻件各部位的组织分布均匀、形貌特征合理,原始β晶粒呈拉长状,没有或者有少量β再结晶晶粒、晶界弯折、晶内为网篮结构。力学性能测试结果表明,优化方案生产的盘锻件的塑性和低周疲劳性能优于原始方案,而且优化后盘锻件各部位的力学性能分散度较小、稳定性较好。
Abstract:
In order to improve the service performance and increase the performance richness of the engine rotating disc, the forming process, microstructure and mechanical properties of TC17 titanium alloy disc forging of the original process for an engine were analyzed. It was found that the preforming design of the original process was unreasonable, which led to the uneven distribution of the equivalent strain and microstructure of the disc forging. The ductility and low cycle fatigue properties of disc forgings were low. To solve this problem, finite element simulation was used to optimize the preforming structure, and the deformation uniformity and microstructure performance of disk forgings were further improved. After optimization, the uneven deformation of forgings is obviously improved, and the microstructure distribution of each part of the forgings is uniform and the morphology characteristics are better. The morphology characteristics are the elongated β grains, and there is no or few β recrystallized grains, grain boundary bending, basketwaved structure inside grain. The results show that the ductility and low cycle fatigue properties of the disk forging of the optimized process are better than those of the original process, and the mechanical properties of each part of the optimized disc forgings have less dispersion and better stability.

参考文献/References:

\[1\]蔡建明, 李娟, 田丰, 等. 航空制造技术\[J\], 2019, 62(19): 34-40. CAI J M, LI J, TIAN F, et al. Aeronautical Manufacturing Technology\[J\]. 2019, 62(19): 34-40. \[2\]孟庆通, 庞克昌, 王晓英. 上海钢研究\[J\], 2006(2): 16-18. MENG Q T, PANG K C, WANG X Y. Shonghai Steel & Iron Research\[J\], 2006(2): 16-18. \[3\]王丹, 赵兴东, 徐建伟, 等. 热加工工艺\[J\], 2020, 49(6): 73-76. WANG D, ZHAO X D, XU J W, et al. Hot Working Technology\[J\], 2020, 49(6): 73-76. \[4\]狄鹏,汤育玺,冀胜利. 热加工工艺\[J\], 2016, 45(17): 135-138. DI P, TANG Y X, JI S L. Hot Working Technology\[J\], 2016, 45(17): 135-138. \[5\]TEIXEIRA J D C, APPOLAIRE B, AEBYGAUTIER E, et al. Materials Science & Engineering A\[J\], 2007, 448: 135-145. \[6\]MA X, ZENG W D, SUN Y, et al. Materials Science & Engineering A\[J\], 2012, 538: 182-189. \[7\]赵兴东, 魏鑫, 曾卫东, 等. 钛工业进展\[J\], 2019, 36(5): 13-17. ZHAO X D, WEI X, ZENG W D, et al. Titanium Industry Progress\[J\], 2019, 36(5): 13-17. \[8\]XU J W, ZENG W D, ZHANG X Y, et al. Journal of Alloys and Compounds\[J\], 2019, 788: 110-117. \[9\]XU J W, ZENG W D, JIA Z Q, et al. Journal of Materials Engineering and Performance\[J\], 2016, 25: 734-743. \[10\]冀胜利. TC17钛合金β等温锻造关键技术及工程应用研究\[D\]. 西安: 西北工业大学, 2019: 81-94. JI S L. Study on Key Technologies of Isothermal Beta Forging for TC17 Titanium Alloy and Its Application in Engineering\[D\]. Xi an: Northwestern Polytechnical University, 2019: 81-94. \[11\]RITCHIE R O. Nature Materials\[J\]. 2011, 10: 817-822. \[12\]GHOSH A, SIVAPRASAD S, BHATTACHARJEE A, et al. Materials Science and Engineering A\[J\], 2013, 568: 61-67. \[13\]朱知寿, 王新南, 童路, 等. 钛工业进展\[J\], 2007(6): 18-21. ZHU Z S, WANG X N, TONG L, et al. Titanium Industry Progress\[J\], 2007(6): 18-21. \[14\]ZHU W G, LEI J, ZHANG Z X, et al. Materials Science and Engineering A\[J\], 2019, 762: 138086. \[15\]XU J W, ZENG W D, ZHAO Y W, et al. Journal of Alloys and Compounds\[J\], 2016, 673: 86-92. \[16\]马权, 郭爱红, 周廉. 中国有色金属学报\[J\], 2019, 29(6): 1219-1225. MA Q, GUO A H, ZHOU L. The Chinese Jounral of Nonferrous Metals\[J\], 2019, 29(6): 1219-1225. \[17\]ZHU WG, LEI J, TAN C S, et al. Material and Design\[J\], 2019, 168: 107640. \[18\]郭萍, 张菁丽, 强菲, 等. 稀有金属材料与工程\[J\], 2022, 51(11): 4358-4362. GUO P, ZHANG J L, QIANG F, et al. Rare Metal Materials and Engineering\[J\], 2022, 51(11): 4358-4362. \[19\]FAN J K, LI J S, KOU H C, et al. Journal of Alloys and Compounds\[J\], 2016, 682:517-524. \[20\]REN L, XIAO W, CHANG H, et al. Materials Science and Engineering A\[J\], 2018, 711: 553-561.

备注/Memo

备注/Memo:
收稿日期:2023-04-21修回日期:2023-08-02 第一作者:魏鑫,男,1983年生,高级工程师,硕士生导师, Email:dangjianshiti@126.com
更新日期/Last Update: 2023-12-12