[1]侯泽明,罗春源,朱平,等.纺织品表面阻燃技术研究进展[J].中国材料进展,2024,43(08):714-723.[doi:10.7502/j.issn.1674-3962.202405024]
 HOU Zeming,LUO Chunyuan,ZHU Ping,et al.Progress in Surface Flame-Retardant Technology for Textiles[J].MATERIALS CHINA,2024,43(08):714-723.[doi:10.7502/j.issn.1674-3962.202405024]
点击复制

纺织品表面阻燃技术研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第08期
页码:
714-723
栏目:
出版日期:
2024-08-30

文章信息/Info

Title:
Progress in Surface Flame-Retardant Technology for Textiles
文章编号:
1674-3962(2024)08-0714-10
作者:
侯泽明罗春源朱平徐英俊
青岛大学 功能纺织品与先进材料研究院,山东 青岛 266071
Author(s):
HOU Zeming LUO Chunyuan ZHU Ping XU Yingjun
Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao 266071, China
关键词:
阻燃纺织品表面技术溶胶凝胶层层自组装共价接枝耐久性
Keywords:
flame retardant textile surface treatment technology sol-gel layer by layer assembly covalent grafting durability
分类号:
TS195.5+92;TS106
DOI:
10.7502/j.issn.1674-3962.202405024
文献标志码:
A
摘要:
纤维、织物等纺织品是“量大面广”的材料制品,但较易燃,火灾危险性高,导致应用范围受限。近年来,人们致力于开发阻燃材料及阻燃技术,以获取阻燃纤维及其制品,满足不同领域的高火安全要求。对于不同纤维、织物及其制品,需因“材”制宜地构建不同的高效阻燃体系,利用便捷的工艺技术将阻燃性能构筑到材料中,以期在实现阻燃的同时降低对其他性能的影响。围绕纺织品的表面阻燃技术研究,概要介绍纺织品传统阻燃机理及技术,而后以作者团队近期工作以及领域内典型报道为例回顾相关研究进展,聚焦于溶胶凝胶、层层自组装、共价接枝等技术,涉及到一些先进耐久阻燃纺织品温和构建技术,同时探讨了各种表面阻燃技术体系的优缺点、应用潜力以及面临的挑战。最后,面向纺织领域的发展趋势,对先进纺织品阻燃技术的迭代优化方向进行了展望。
Abstract:
ibers and fabrics have extensive applications in many fields, including apparel, defense, and transportation, etc. However, most textiles present high flammability and often bring fire hazards. For this, researcher have long developed flame-retardant materials and technologies to achieve flameretardant fibers and their products. For different kind of textiles materials, it is needed to develop distinctively efficient flame retardant systems and employ convenient technologies, thereby achieving flame retardancy while minimizing any deteriorations on other performance. This review focused on recent progress in surface flame-retardant technology for textiles. Traditional flameretardant mechanisms and technologies were briefly introduced. Using our group’s work and other studies as examples, different surface treatment approaches for flame-retardant fabrics were highlighted, such as sol-gel deposition, layer-by-layer assembly, and covalent grafting methods. Also, some explorations of advanced methodologies for producing durable flame-retardant textiles under mild conditions were discussed. Besides,advantages/disadvantages, application potential, and challenges were indicated. Finally, a brief prospect was provided on the potential opportunities of flame-retardant technologies for fabrics, with the aim of guiding the advancement of the textile industries.

参考文献/References:

References
[1] 陈琳, 刘博文, 付腾, et al. [J]. 科学通报, 2020, 65(28-29): 3160-3172.
[2] ZHAO H B, WANG Y Z. [J]. Macromolecular Rapid Communications, 2017, 38(23): 1700451.
[3] HORROCKS A R, LIU W. [J]. 中国材料进展, 2015, 34(9): 659-674.
[4] KUNDU C K, LI Z, SONG L, et al. [J]. European Polymer Journal, 2020, 137: 109911.
[5] ?ZER M S, GAAN S. [J]. Progress in Organic Coatings, 2022, 171: 107027.
[6] QI P, CHEN F, LI Y, et al. [J]. Advanced Fiber Materials, 2023, 5: 731–763.
[7] CHEN L, WANG Y-Z. [J]. Polymers for Advanced Technologies, 2009, 21: 1-26.
[8] LAZAR S T, KOLIBABA T J, GRUNLAN J C. [J]. Nature Reviews Materials, 2020, 5(4): 259-275.
[9] WANG X, KALALI E N, WAN J-T, et al. [J]. Progress in Polymer Science, 2017, 69: 22-46.
[10] LING C, GUO L, WANG Z. [J]. Industrial Crops and Products, 2023, 194: 116264.
[11] BRAUN U, BALABANOVICH A I, SCHARTEL B, et al. [J]. Polymer, 2006, 47(26): 8495-8508.
[12] VELENCOSO M M, BATTIG A, MARKWART J C, et al. [J]. Angewandte Chemie International Edition, 2018, 57(33): 10450-10467.
[13] ZHANG K, ZONG L, TAN Y, et al. [J]. Carbohydrate Polymers, 2016, 136: 121-127.
[14] XU Y-J, QU L-Y, LIU Y, et al. [J]. Carbohydrate Polymers, 2021, 260: 117827.
[15] 徐英俊, 王芳, 倪延朋, et al. [J]. 纺织学报, 2022, 43(02): 1-9.
[16] WANG F, LI J-Y, PI J, et al. [J]. Chemical Engineering Journal, 2021, 421: 127793.
[17] ALONGI J, CIOBANU M, MALUCELLI G. [J]. Cellulose, 2010, 18(1): 167-177.
[18] ALONGI J, CIOBANU M, MALUCELLI G. [J]. Carbohydrate Polymers, 2012, 87(3): 2093-2099.
[19] ALONGI J, CIOBANU M, MALUCELLI G. [J]. Carbohydrate Polymers, 2011, 85(3): 599-608.
[20] ZHANG D, WILLIAMS B L, SHRESTHA S B, et al. [J]. Journal of Colloid and Interface Science, 2017, 505: 892-899.
[21] CHENG X-W, LIANG C-X, GUAN J-P, et al. [J]. Applied Surface Science, 2018, 427: 69-80.
[22] KUNDU C K, SONG L, HU Y. [J]. European Polymer Journal, 2020, 125: 109483.
[23] LIU Y, PAN Y-T, WANG X, et al. [J]. Chemical Engineering Journal, 2016, 294: 167-175.
[24] JIANG Z, LI H, HE Y, et al. [J]. Applied Surface Science, 2019, 479: 765-775.
[25] LIU J, DONG C, ZHANG Z, et al. [J]. Cellulose, 2020, 27(15): 9027-9043.
[26] JIANG Z, XU D, MA X, et al. [J]. Cellulose, 2019, 26(9): 5783-5796.
[27] WANG S, XU D, LIU Y, et al. [J]. Polymer Degradation and Stability, 2021, 190: 109620.
[28] XU D, GAO Z, XU B, et al. [J]. Polymer Degradation and Stability, 2020, 180: 109312.
[29] LI P, WANG B, XU Y-J, et al. [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19246-19256.
[30] TAO Y, LIU C, LI P, et al. [J]. Progress in Organic Coatings, 2021, 150: 105971.
[31] WANG B, LIU J-L, XU Y-J, et al. [J]. Polymer Degradation and Stability, 2022, 204: 110115.
[32] LIU H, LI P, XU Y-J, et al. [J]. Sustainable Materials and Technologies, 2024, 39: e00821.
[33] ZHANG L, ZHENG G-Q, CHEN X-L, et al. [J]. ACS Materials Letters, 2023: 2398-2407.
[34] WANG Q-Z, LIU C, XU Y-J, et al. [J]. Polymer, 2021, 226: 123761.
[35] LIU B-W, ZHAO H-B, WANG Y-Z. [J]. Advanced Materials, 2022, 34(46): 2107905.
[36] RICHARDSON J J, CUI J, BJORNMALM M, et al. [J]. Chemical Reviews, 2016, 116(23): 14828-14867.
[37] QIU X, LI Z, LI X, et al. [J]. Chemical Engineering Journal, 2018, 334: 108-122.
[38] LI Y C, SCHULZ J, GRUNLAN J C. [J]. ACS Applied Materials & Interfaces, 2009, 1(10): 2338-2347.
[39] CAROSIO F, FONTAINE G, ALONGI J, et al. [J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12158-12167.
[40] CAROSIO F, ALONGI J. [J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6315-6319.
[41] HOLDER K M, SMITH R J, GRUNLAN J C. [J]. Journal of Materials Science, 2017, 52(22): 12923-12959.
[42] SMITH R J, HOLDER K M, RUIZ S, et al. [J]. Advanced Functional Materials, 2018, 28(27): 1703289.
[43] WANG B, XU Y-J, LI P, et al. [J]. Applied Surface Science, 2020, 509: 145323.
[44] LI P, WANG B, LIU Y-Y, et al. [J]. Carbohydrate Polymers, 2020, 237: 116173.
[45] LI P, LIU C, XU Y-J, et al. [J]. Polymer Degradation and Stability, 2020, 181: 109302.
[46] LI P, LIU C, WANG B, et al. [J]. Progress in Organic Coatings, 2021, 159: 106400.
[47] DU L, WANG S, ZHU P, et al. [J]. International Journal of Biological Macromolecules, 2024, 258: 129007.
[48] CAROSIO F, ALONGI J. [J]. RSC Advances, 2015, 5(87): 71482-71490.
[49] PAN Y, WANG W, LIU L, et al. [J]. Carbohydrate Polymers, 2017, 170: 133-139.
[50] PAN Y, LIU L, WANG X, et al. [J]. Carbohydrate Polymers, 2018, 201: 1-8.
[51] PAN Y, LIU L, SONG L, et al. [J]. Polymer Degradation and Stability, 2019, 165: 145-152.
[52] PAN Y, LIU L, ZHANG Y, et al. [J]. Carbohydrate Polymers, 2019, 206: 396-402.
[53] MATEOS A J, CAIN A A, GRUNLAN J C. [J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6409-6416.
[54] CHANG S, SLOPEK R P, CONDON B, et al. [J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 3805-3812.
[55] WANG S, SUN L, LI Y, et al. [J]. Industrial Crops and Products, 2021, 173: 114157.
[56] SHI J, ZHANG P, ZHANG C, et al. [J]. European Polymer Journal, 2024, 206: 112804.
[57] HORROCKS A R. [J]. Polymer Degradation and Stability, 2011, 96(3): 377-392.
[58] LUO X, LI Z, SHEN J, et al. [J]. Chemical Engineering Journal, 2022, 430: 132854.
[59] ZHENG D, ZHOU J, ZHONG L, et al. [J]. Cellulose, 2016, 23(3): 2211-2220.
[60] LU Y, JIA Y, ZHOU Y, et al. [J]. Carbohydrate Polymers, 2018, 201: 438-445.
[61] HUANG S, FENG Y, LI S, et al. [J]. Polymer Degradation and Stability, 2019, 164: 157-166.
[62] JIA Y, LU Y, ZHANG G, et al. [J]. Journal of Materials Chemistry A, 2017, 5(20): 9970-9981.
[63] LIU X-h, ZHANG Y-g, CHENG B-w, et al. [J]. Cellulose, 2018, 25(11): 6745-6758.
[64] LIU K, CHENG Y, LI J, et al. [J]. Journal of Colloid and Interface Science, 2023, 640: 688-697.
[65] TIAN P, LU Y, WANG D, et al. [J]. Cellulose, 2019, 26(11): 6995-7007.
[66] SUN L, WANG H, LI W, et al. [J]. Cellulose, 2021, 28(6): 3789-3805.
[67] SUN L, XIE Y, WU J, et al. [J]. Cellulose, 2021, 28(5): 3249-3264.
[68] WAN C, LIU M, TIAN P, et al. [J]. Cellulose, 2020, 27(3): 1745-1761.
[69] CHENG X-W, WANG Z-Y, JIN W-J, et al. [J]. Industrial Crops and Products, 2022, 187: 115332.
[70] QI P, LI Y, YAO Y, et al. [J]. Chemical Engineering Journal, 2023, 452: 139453.
[71] LU Y, ZHAO P, CHEN Y, et al. [J]. International Journal of Biological Macromolecules, 2022, 223: 1394-1404.
[72] WU X, YANG C Q, HE Q. [J]. Cellulose, 2010, 17(4): 859-870.
[73] ZHANG C, JIANG Z, ZHU S, et al. [J]. Cellulose, 2021, 28(3): 1857-1872.
[74] GUO S, WANG H, ZHANG C, et al. [J]. Thermochimica Acta, 2021, 704: 179031.
[75] CHENG X-W, ZHANG C, JIN W-J, et al. [J]. Industrial Crops and Products, 2021, 171: 113966.
[76] ZHANG C, ZHANG C, JIANG Z, et al. [J]. Industrial Crops and Products, 2022, 180: 114738.
[77] CHANG S, CONDON B, GRAVES E, et al. [J]. Fibers and Polymers, 2011, 12(3): 334-339.
[78] NGUYEN T-M D, CHANG S, CONDON B, et al. [J]. Polymers for Advanced Technologies, 2012, 23(7): 1036-1044.
[79] XU D, WANG S, HU J, et al. [J]. Cellulose, 2021, 28(5): 3265-3277.
[80] WANG S, XU D, ZHU P, et al. [J]. Industrial Crops and Products, 2022, 186: 115261.
[81] WANG S, LIU J, SUN L, et al. [J]. Cellulose, 2020, 27(17): 10425-10440.
[82] CAIN A A, MURRAY S, HOLDER K M, et al. [J]. Macromolecular Materials and Engineering, 2014, 299(10): 1180-1187.
[83] LEISTNER M, HAILE M, ROHMER S, et al. [J]. Polymer Degradation and Stability, 2015, 122: 1-7.
[84] HAILE M, LEISTNER M, SARWAR O, et al. [J]. RSC Advances, 2016, 6(40): 33998-34004.
[85] CHENG X-W, GUAN J-P, YANG X-H, et al. [J]. Journal of Cleaner Production, 2019, 223: 342-349.
[86] WANG T, XU J, ZHAN Y-J, et al. [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(12): 4838-4849.
[87] WANG B, LUO C-Y, ZHU P, et al. [J]. Progress in Organic Coatings, 2023, 184.
[88] CHO J H, VASAGAR V, SHANMUGANATHAN K, et al. [J]. Chemistry of materials, 2015, 27(19): 6784-6790.
[89] ZENG F-R, LIU B-W, WANG Z-H, et al. [J]. ACS Materials Letters, 2023: 1692-1702.
[90] LI Y, WANG B, SUI X, et al. [J]. Applied Surface Science, 2018, 435: 1337-1343.
[91] QI P, LI Y, SUN J, et al. [J]. Composites Part B: Engineering, 2022, 247: 110262.
[92] FU C, XU X, YIN G-Z, et al. [J]. Applied Surface Science, 2022, 585: 152550.
[93] WANG Z-H, ZHANG A-N, LIU B-W, et al. [J]. Polymer Degradation and Stability, 2022, 201: 109997.
[94] YANG T-T, GUAN J-P, TANG R-C, et al. [J]. Industrial Crops and Products, 2018, 115: 16-25.
[95] ZHANG W, YANG Z-Y, TANG R-C, et al. [J]. Journal of Cleaner Production, 2020, 250: 119545.
[96] ZHANG A-N, ZHAO H-B, CHENG J-B, et al. [J]. Chemical Engineering Journal, 2021, 410: 128361.
[97] ZHANG A-N, LIU B-W, ZHAO H-B, et al. [J]. Progress in Organic Coatings, 2022, 170: 106964.
[98] CHENG T-H, LIU Z-J, YANG J-Y, et al. [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18405-18413.
[99] ZHOU Y, TANG R-C, XING T, et al. [J]. Industrial Crops and Products, 2019, 130: 580-591.
[100] GUO S, WANG H, ZHANG C, et al. [J]. Applied Surface Science, 2022, 586: 152808.
[101] WANG Z-H, LIU B-W, ZENG F-R, et al. [J]. Science Advances, 8(50): eadd8527.

备注/Memo

备注/Memo:
收稿日期:2024-05-23修回日期:2024-08-01 基金项目:国家自然科学基金资助项目(51991354);中国科协青年人才托举工程资助项目(2022QNRC001) 第一作者:侯泽明,男,1998年生,博士研究生 通讯作者:徐英俊,男,1991年生,教授,博士生导师, Email: yingjun.xu@qdu.edu.cn
更新日期/Last Update: 2024-07-31