[1]张峻浩,李蕊轩,张勇.低维度及低密度多主元合金[J].中国材料进展,2025,44(01):001-14.[doi:10.7502/j.issn.1674-3962.202410011]
 ZHANG Junhao,LI Ruixuan,ZHANG Yong.Low Dimensional, Low-Density Multi-Principal Element Alloys[J].MATERIALS CHINA,2025,44(01):001-14.[doi:10.7502/j.issn.1674-3962.202410011]
点击复制

低维度及低密度多主元合金()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
44
期数:
2025年01
页码:
001-14
栏目:
出版日期:
2025-01-30

文章信息/Info

Title:
Low Dimensional, Low-Density Multi-Principal Element Alloys
文章编号:
1674-3962(2025)01-0001-14
作者:
张峻浩李蕊轩张勇
北京科技大学新金属材料国家重点实验室,北京,100083
Author(s):
ZHANG JunhaoLI RuixuanZHANG Yong
State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,China
关键词:
北京科技大学 新金属材料国家重点实验室北京 100083
Keywords:
low dimensional low-density multi-principal element alloys medium entropy alloys high entropy alloys preparation method mechanical property
分类号:
TG139
DOI:
10.7502/j.issn.1674-3962.202410011
文献标志码:
A
摘要:
主要介绍了低维度、低密度多主元合金的研究进展与发展前景。多主元合金通常包括中熵合金和高熵合金。高熵合金通过“熵调控”设计理念,克服了传统合金材料在强度与韧性上的限制,展现出优异的力学性能。然而,密度大和成本高的缺点限制了其广泛应用。为解决这些问题,研究者们开发了低维度中、高熵合金材料和低密度高熵合金(即轻质高熵合金)。详细介绍了低维度中、高熵合金和低密度高熵合金的制备方法、性能特点和发展前景。一维多主元合金,即中、高熵合金纤维,主要通过热拉拔、冷拉拔和玻璃包覆法制备,在室温和低温条件下均表现出优异的力学性能,在高熵合金纤维柔性材料和复合材料等领域中应用前景广阔;二维高熵合金,即高熵薄膜,可通过物理气相沉积等技术制备,表现出超高的硬度和良好的高温稳定性,在航空航天、能源等极端条件下的应用潜力巨大;低密度高熵合金,即轻质高熵合金,不仅具有高熵合金高强度、耐腐蚀和耐高温的特性,还具有密度低的优点,在航空航天等极端环境领域将发挥重要作用。
Abstract:
The article mainly introduces the research progress and development prospects of low dimensional, low-density multi-principal element alloys. Multi-principal element alloys typically include medium entropy alloys and high entropy alloys. High entropy alloys overcome the limitations of traditional alloy materials in strength and toughness through the design concept of “entropy regulation”, exhibiting excellent mechanical properties. However, the drawbacks of high density and cost limit its widespread application. To address these issues, researchers have developed low dimensional medium and high entropy alloy materials and low-density high entropy alloys (i.e. light-weight high entropy alloys). The article provides a detailed introduction to the preparation methods, performance characteristics, and development prospects of low dimensional medium and high entropy alloys, as well as low-density high entropy alloys. One dimensional multi-principal element alloys, namely medium and high entropy alloy fibers, are mainly prepared by hot drawing, cold drawing, and glass coating methods. They exhibit excellent mechanical properties at both room temperature and low temperature conditions, and have broad application prospects in fields such as high entropy alloy fiber flexible materials and composite materials. Two dimensional high entropy alloys, also known as high entropy films, can be prepared through techniques such as physical vapor deposition, exhibiting ultra-high hardness and good high temperature stability. They have enormous potential for applications in extreme conditions such as aerospace and energy. Low-density high entropy alloys, also known as lightweight high entropy alloys, not only have the characteristics of high strength, corrosion resistance, and high temperature resistance of high entropy alloys, but also have the advantage of low density. They will play an important role in extreme environmental fields such as aerospace.

参考文献/References:

[1].ZHANG Y, ZUO T T, TANG Z, et al. Progress in Materials Science [J], 2014, 61: 1-93.
[2].ZHANG W, LIAW P K, ZHANG Y. Science China Materials [J], 2018, 61(1): 2-22.
[3].YEH J W. Annales De Chimie-Science des Materiaux [J], 2006, 31(6): 633-648.
[4].He J Y, Liu W H, Wang H, et al. Acta Materialia [J], 2014, 62: 105-113.
[5].ZHANG W, LIAW P K, ZHANG Y. Science China Materials [J], 2018, 61(1): 2-22.
[6].HE F, CHEN D, HAN B, et al. Acta Materialia [J], 2019, 167: 275-286.
[7].ZHANG Z, HAN E H, XIANG C. Journal of Materials Science & Technology[J], 2021, 84: 230-238.
[8].WENG F, CHEW Y, ONG W K, et al. Corrosion Science[J], 2022, 195: 109965.
[9].SENKOV O N, SENKOVA S V, WOODWARD C, et al. Acta Materialia[J], 2013, 61(5): 1545-1557.
[10].ZHOU J, WU D, LIAO H, et al. Advanced Engineering Materials [J], 2023, 25(16): 2300292.
[11].张一村.AlTiVZrB轻质高熵合金的微观组织和性能研究[D].郑州大学,2019.
[12].陈金玺,徐彬,戴兰宏,等. 科学通报[J],2024,69(21):3154-3176.
[13].CHEN J X, XU B, DAI L H, et al, Chinese Science Bulletin[J], 2024,69(21):3154-3176.
[14].LI D, LI C, FENG T, et al. Acta Materialia[J], 2017, 123: 285-294.
[15].KAO Y F, CHEN T J, CHEN S K, et al. Journal of Alloys and Compounds[J], 2009, 488(1): 57-64.
[16].LI D, GAO M C, HAWK J A, et al. Journal of Alloys and Compounds[J], 2019, 778: 23-29.
[17].LU Y, DONG Y, GUO S, et al. Scientific reports[J], 2014, 4(1): 6200.
[18].ZHOU S, DAI C, HOU H, et al. Scripta Materialia[J], 2023, 226: 115234.
[19].CHEN J X, LI T, CHEN Y, et al. Acta Materialia[J], 2023, 243: 118515.
[20].CANTOR B, CHANG I T H, KNIGHT P, et al. Materials Science and Engineering: A[J], 2004, 375: 213-218.
[21].WU Z, BEI H, PHARR G M, et al. Acta Materialia[J], 2014, 81: 428-441.
[22].LIU J P, CHEN J X, LIU T W, et al. Scripta Materialia[J], 2020, 181: 19-24.
[23].CHEN J X, CHEN Y, LIU J P, et al. Scripta Materialia[J], 2021, 199: 113897.
[24].SOHN S S, KWIATKOWSKI DA SILVA A, IKEDA Y, et al. Advanced Materials[J], 2019, 31(8): 1807142.
[25].SOHN S S, KIM D G, JO Y H, et al. Acta Materialia[J], 2020, 194: 106-117.
[26].KOSTIUCHENKO T, RUBAN A V, NEUGEBAUER J, et al. Physical Review Materials[J], 2020, 4(11): 113802.
[27].DENG L, LI R, LUO J, et al. International Journal of Plasticity[J], 2024, 175: 103929.
[28].HUO W, FANG F, ZHOU H, et al. Scripta Materialia[J], 2017, 141: 125-128.
[29].MA X, CHEN J, WANG X, et al. Journal of Alloys and Compounds[J], 2019, 795: 45-53.
[30].KWON Y J, WON J W, PARK S H, et al. Materials Science and Engineering: A[J], 2018, 732: 105-111.
[31].CHO H S, BAE S J, NA Y S, et al. Journal of Alloys and Compounds[J], 2020, 821: 153526.
[32].SHIM S H, POURALIAKBAR H, HONG S I. Materials Science and Engineering: A[J], 2021, 825: 141875.
[33].XIANG L, WANG H Y, CHEN Y, et al. International Journal of Solids and Structures [J], 2017, 129: 103-118.
[34].FANG F, WANG L, ZHOU L, et al. Materials Science and Technology [J], 2018, 34(7): 766-771.
[35].ZHOU L, FANG F, ZHOU X, et al. Scripta Materialia [J], 2016, 120: 5-8.
[36].LAMONTAGNE A, MASSARDIER V, SAUVAGE X, et al. Materials Science and Engineering: A [J], 2016, 667: 115-124.
[37].TAKAHASHI J, KOSAKA M, KAWAKAMI K, et al. Acta Materialia [J], 2012, 60(1): 387-395.
[38].SHI M, PAN X, WU D, et al. International Journal of Fatigue [J], 2024, 183: 108274.
[39].李可然,王东亮,邓磊,等. 中国有色金属学报 [J],2022,32(05):1237-1253.
[40].LI Y, MA J, LIAW P K, et al. Journal of Alloys and Compounds[J], 2022, 913: 165294.
[41].XING Q, MA J, WANG C, et al. ACS Combinatorial Science[J], 2018, 20(11): 602-610.
[42].XING Q, MA J, ZHANG Y. International Journal of Minerals[J], Metallurgy and Materials, 2020, 27: 1379-1387.
[43].YUE Y, YAN X, ZHANG Y. Journal of Materials Research and Technology[J], 2022, 21: 1120-1127.
[44].ZHANG Y, YAN X H, MA J, et al. Journal of materials research[J], 2018, 33(19): 3330-3338.
[45].HUANG H, LIAW P K, ZHANG Y. Nano Research[J], 2022, 15(6): 4837-4844.
[46].SHENG W, YANG X, WANG C, et al. Entropy [J], 2016, 18(6): 226.
[47].ZHANG Y, YAN X H, LIAO W B, et al. Entropy[J], 2018, 20(9): 624.
[48].YANG X, ZHANG Y. Materials Chemistry and Physics[J], 2012, 132(2-3): 233-238.
[49].闫薛卉,张勇.表面技术 [J],2019,48(06):98-106+117.
[50].REN B, LIU Z X, LI D M, et al. Materials and corrosion [J], 2012, 63(9): 828-834.
[51].VON FIEANDT K, PASCHALIDOU E M, SRINATH A, et al. Thin Solid Films [J], 2020, 693: 137685.
[52].LIN C H, DUH J G. Surface and Coatings Technology [J], 2008, 203(5-7): 558-561.
[53].TSAI D C, CHANG Z C, KUO B H, et al. Surface and Coatings Technology [J], 2014, 240: 160-166.
[54].TSAI D C, DENG M J, CHANG Z C, et al. Journal of Alloys and Compounds [J], 2015, 647: 179-188.
[55].FENG X, TANG G, GU L, et al. Applied Surface Science [J], 2012, 261: 447-453.
[56].CHENG K H, LAI C H, LIN S J, et al. Thin Solid Films [J], 2011, 519(10): 3185-3190.
[57].LAI C H, LIN S J, YEH J W, et al. Surface and Coatings Technology [J], 2006, 201(6): 3275-3280.
[58].LAI C H, CHENG K H, LIN S J, et al. Surface and Coatings Technology [J], 2008, 202(15): 3732-3738.
[59].董权,李萌,张宇飞,等.Transactions of Nonferrous Metals Society of China[J/OL],1-27[2024-10-15].http://kns.cnki.net/kcms/detail/43.1239.TG.20240806.1717.018.html.
[60].ZHI Q, TAN X, LIU Z, et al. Micron[J], 2021, 144: 103031.
[61].QIU Y, THOMAS S, GIBSON M A, et al. Corrosion Science[J], 2018, 133: 386-396.
[62].TSENG K K, YANG Y C, JUAN C C, et al. Science China Technological Sciences[J], 2018, 61: 184-188.
[63].RAMAN L, ANUPAM A, KARTHICK G, et al. Materials Science and Engineering: A[J], 2021, 819: 141503.
[64].YANG X, CHEN S Y, COTTON J D, et al. Jom[J], 2014, 66: 2009-2020.
[65].YOUSSEF K M, ZADDACH A J, NIU C, et al. Materials Research Letters[J], 2015, 3(2): 95-99.
[66].CHEN Y L, TSAI C W, JUAN C C, et al. Journal of alloys and compounds[J], 2010, 506(1): 210-215.
[67].SUN W, HUANG X, LUO A A. Calphad[J], 2017, 56: 19-28.
[68].贾岳飞, 王刚, 贾延东,等. 材料导报[J], 2020, 34(17): 17003-17017.
[69].JIA Y F, WANG G, JIA Y D, et al. Materials Reports[J], 2020, 34(17): 17003-17017.
[70].XIE Y, MENG X, ZANG R, et al. Materials Science and Engineering: A[J], 2022, 830: 142332.
[71].LIAO Y C, LI T H, TSAI P H, et al. Intermetallics [J], 2020, 117: 106673.
[72].SENKOV O N, SENKOVA S V, MIRACLE D B, et al. Materials Science and Engineering: A[J], 2013, 565: 51-62.
[73].STEPANOV N D, SHAYSULTANOV D G, SALISHCHEV G A, et al. Materials Letters[J], 2015, 142: 153-155.
[74].STEPANOV N D, YURCHENKO N Y, SHAYSULTANOV D G, et al. Materials Science and Technology[J], 2015, 31(10): 1184-1193.
[75].STEPANOV N D, YURCHENKO N Y, SKIBIN D V, et al. Journal of Alloys and Compounds[J], 2015, 652: 266-280.
[76].QIU Y, HU Y J, TAYLOR A, et al. Acta Materialia[J], 2017, 123: 115-124.
[77].ESMAILY M, QIU Y, BIGDELI S, et al. npj Materials Degradation[J], 2020, 4(1): 25.
[78].HUANG S, LI W, ERIKSSON O, et al. Acta Materialia[J], 2020, 199: 53-62.
[79].QIU Y, THOMAS S, GIBSON M A, et al. npj Materials degradation[J], 2017, 1(1): 15.
[80].QIU X W, ZHANG Y P, HE L, et al. Journal of alloys and compounds[J], 2013, 549: 195-199.
[81].LUO H, LI Z, MINGERS A M, et al. Corrosion Science[J], 2018, 134: 131-139.
[82].SHI Y, YANG B, LIAW P K. Metals[J], 2017, 7(2): 43.
[83].QIU Y, THOMAS S, GIBSON M A, et al. Corrosion Science[J], 2018, 133: 386-396.
[84].LIU K, LI X, WANG J, et al. Materials Characterization[J], 2023, 200: 112878.
[85].LI M, CHEN Q, CUI X, et al. Journal of Alloys and Compounds[J], 2021, 857: 158278.
[86].JI C, MA A, JIANG J. Journal of Alloys and Compounds[J], 2022, 900: 163508.

备注/Memo

备注/Memo:
收稿日期:2024-10-15修回日期:2024-12-10 基金项目:国家自然科学基金资助项目(52273280);中国创新研究 群体资助项目(51921001) 第一作者:张峻浩,男,2001年生,硕士研究生 通讯作者:张勇,男,1969年生,教授,博士生导师, Email: drzhangy@ustb.edu.cn
更新日期/Last Update: 2024-12-30