[1]沈鸿葵,林峰,韩明亮,等.轻质高熵高温合金成分设计研究进展[J].中国材料进展,2025,44(01):040-48.[doi:10.7502/j.issn.1674-3962.202412012]
 HEN Hongkui,LIN Feng,HAN Mingliang,et al.Research Progress in Composition Design of Lightweight High-Entropy HighTemperature Alloys[J].MATERIALS CHINA,2025,44(01):040-48.[doi:10.7502/j.issn.1674-3962.202412012]
点击复制

轻质高熵高温合金成分设计研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
44
期数:
2025年01
页码:
040-48
栏目:
出版日期:
2025-01-30

文章信息/Info

Title:
Research Progress in Composition Design of Lightweight High-Entropy HighTemperature Alloys
文章编号:
1674-3962(2025)01-0040-09
作者:
沈鸿葵林峰韩明亮张英杰吴渊张晓宾王辉刘雄军蒋虽合吕昭平
北京科技大学 新金属材料国家重点实验室,北京 100083
Author(s):
HEN HongkuiLIN FengHAN MingliangZHANG YingjieWU YuanZHANG XiaobinWANG Hui LIU Xiongjun JIANG Suihe LU Zhaoping
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083, China
关键词:
轻质高熵合金高温合金高温性能成分设计相结构强化机制
Keywords:
lightweight high-entropy alloys superalloys high-temperature performance composition design phase structure strengthening mechanism
分类号:
TG139;TG132.3
DOI:
10.7502/j.issn.1674-3962.202412012
文献标志码:
A
摘要:
相比于传统镍基高温合金,轻质高熵高温合金可同时具有高强度、低密度等特点,受到了广泛关注。综述了轻质高熵高温合金的研究进展,并依据相结构将其划分为4类:单相固溶强化合金、金属间化合物相强化合金、共晶组织强化合金和非金属元素强化合金。单相固溶强化合金通过元素调控实现性能优化,例如Al-Nb-V-Ti-Zr体系中Al元素的添加可显著提升其强度和硬度。金属间化合物相强化合金通过第二相的加入提升性能,但需注意某些金属间化合物可能导致脆化。共晶组织强化合金展现出良好的高温性能,但其室温塑性仍需改进。非金属元素强化合金通过多种机制进行强化,但元素添加量的精确控制至关重要。尽管在轻质高熵高温合金的成分设计和微观结构优化方面已取得一定成果,但仍面临成本高和工艺复杂等挑战。未来研究应聚焦于优化成分结构、深化理论研究、降低制备成本以及拓展应用与跨领域合作等方面,以促进轻质高熵高温合金的发展与广泛应用。
Abstract:
Compared with traditional nickel-based superalloys, lightweight high-entropy high-temperature alloys can possess remarkable characteristics, such as high strength and low density, and have captured extensive attention. This paper reviews recent advancements in this field and categorizes these alloys into four types based on phase structures: single-phase solid solution strengthening alloys, intermetallic compound phase strengthening alloys, eutectic structure strengthening alloys, and non-metallic element strengthening alloys. Singlephase solid solution strengthening alloys improve performance through elemental regulation, for instance, the addition of Al element in the Al-Nb-V-TiZr system can significantly enhance its strength and hardness. Intermetallic compound phase strengthening alloys improve performance by incorporating a second phase, although certain intermetallic compounds may introduce brittleness. Eutectic structure strengthening alloys demonstrate excellent hightemperature performance but require further improvement in room temperature ductility. Non-metallic element strengthening alloys benefit from various strengthening mechanisms, and precise control of the addition amount is critical. While significant progress has been made in composition design and microstructure optimization of lightweight high-entropy high-temperature alloys, they still face challenges such as high cost and complex manufacturing processes. In the future, we should focus on optimizing composition and structure, deepening theoretical understanding, reducing manufacturing cost, and expanding applications through interdisciplinary collaboration to promote the development and widespread adoption of lightweight high-entropy hightemperature alloys.

备注/Memo

备注/Memo:
收稿日期:2024-12-22修回日期:2025-01-07 基金项目:国家自然科学基金资助项目(52225103,51921001) 第一作者:沈鸿葵,男,2000年生,硕士研究生 通讯作者:吴渊,男,1980年生,教授,博士生导师, Email: wuyuan@ustb.edu.cn
更新日期/Last Update: 2025-01-21