[1]陈海燕,谢建良,周佩珩,等.电磁缺陷修复材料研究进展[J].中国材料进展,2013,(8):001-10.[doi:10.7502/j.issn.1674-3962.2013.08.05]
 Hai-Yan Chen,Jian-Liang Xie,Pei-Heng Zhou,et al.Research Development of Electromagnetic Discontinuities Repairing Materials[J].MATERIALS CHINA,2013,(8):001-10.[doi:10.7502/j.issn.1674-3962.2013.08.05]
点击复制

电磁缺陷修复材料研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第8期
页码:
001-10
栏目:
特约研究论文
出版日期:
2013-08-31

文章信息/Info

Title:
Research Development of Electromagnetic Discontinuities Repairing Materials
文章编号:
1674—3962 (2013)01-
作者:
陈海燕谢建良周佩珩陆海鹏邓龙江*
(电子科技大学,国家电磁辐射控制材料工程技术研究中心,四川 成都 610054)
Author(s):
Hai-Yan Chen Jian-Liang Xie Pei-Heng Zhou and Hai-Peng Lu Long-Jiang Deng*
(University of Electronic Science and Technology of China, National Engineering Research Center of Electromagnetic Radiation Control Materials, Chengdu, 610054, China)
关键词:
电磁缺陷渐变阻抗材料边缘散射电磁缺陷修复材料
分类号:
TN34
DOI:
10.7502/j.issn.1674-3962.2013.08.05
文献标志码:
A
摘要:
研究了电磁缺陷修复材料在飞行器边缘、缝隙等表面电磁缺陷散射控制中的应用,阐述了其原理和发展状况。给出了表面电磁缺陷的基本定义,分析了其散射特点,并提出电磁缺陷修复原理及基本方法。电磁缺陷修复材料主要包括用于表面波抑制的磁性材料、用于窄缝隙保证电连续的导电材料和用于边缘散射控制的渐变阻抗材料等三类,本文重点介绍了用于边缘散射控制的渐变阻抗材料。该渐变阻抗材料基于图形渐变频率选择表面的概念,加载于边缘考虑平行极化和垂直极化两种情况,并与边缘锯齿化和未加载情况进行比较。从研究情况来看,经过恰当的材料选取和合理的阻抗梯度设计,渐变阻抗材料可以有效控制边缘散射,并能取得宽带效果。最后展望了渐变阻抗材料在电磁散射及电磁辐射领域的应用前景。
Abstract:
The theory, application and development of electromagnetic discontinuities repairing materials in scattering controlling of electromagnetic discontinuities such as edge, gaps and grooves, and steps, are described in this paper. The definition and characteristic of surface electromagnetic discontinuities are analyzed, and the theory and methods for repairing electromagnetic discontinuities are also proposed. Electromagnetic discontinuities repairing materials including magnetic materials for suppression of surface wave, conductive materials for repairing the narrow gaps or grooves, and the tapered impedance materials for controlling edge scattering are discussed respectively, and one of which, the tapered impedance materials are illustrated particularly. The tapered resistive materials realized by geometric variation based on frequency-selective surfaces concepts is demonstrated having good suppression of edge scattering from a triangular metallic plate. Electromagnetic back-scattering of the as-prepared target from a triangular plate with edge tapered resistive sheet loading is proposed for both horizontal polarization and vertical polarization, and compared with that from the one of the same shape but loaded with serrated shaping or none resistive sheet on the edge. The results show that the tapered impedance materials can regulate effect edge scattering by choosing the appropriate materials and devising the reasonable gradient characteristic of the impedance. Some viewpoints of the tapered impedance material抯 future application in electromagnetic scattering and electromagnetic radiation domains are proposed

参考文献/References:

References
[1] Sang Jianhua(桑建华),Zhang Zongbin(张宗斌),Wang Shuo(王烁). 低RCS飞行器表面弱散射源研究[J].Advances In Aeronautical Science and Engineering(航空工程进展),2012,3(3):257-262.
[2] Eugene F. Knott, Michael T. Tuley, Johun F. Shaeffer. Radar cross section (second edition)[M]. SciTech Publishing, 2004: 270-273.
[3] Sang Jianhua(桑建华),Zhou Hai(周海). 飞行器表面电磁缺陷及雷达吸波材料应用[J].Journal of Aeronautical Materials(航空材料学报),2003,23(2):51-55.
[4] David C. Jenn. Radar and laser cross section engineering (second edition)[M]. American Institute of Aeronautics and Astronautics, Inc, 2005: 324-327.
[5] Brett S. Naisty. Lockheed Martin抯 Affordable Stealth [M].USA: National Press Club,2000.
[6] G. T. Ruck, D. E. Barrick, W.D. Stuart, C. K. Krichbaum. Radar cross section handbook (Volume 2) [M]. New York: Plenum, 1970: 602.
[7] Eugene F. Knott, Michael T. Tuley, Johun F. Shaeffer. Radar cross section (second edition)[M]. SciTech Publishing, 2004: 343-344.
[8] Chen Haiyan(陈海燕). Study on Scattering Mechanisms and RCS Reduction of Electromagnetic Discontinuities(表面电磁缺陷散射机制及其RCS减缩研究)[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
[9] R. Collin. Field Theory of Guided Waves. 2nd ed. New York: IEEE Press, 1991.
[10] J. Stratton. Electromagnetic theory. McGraw-Hill. 1941.
[11] Ling, R. T., Scholler, J. D. and Ufimtsev, P. Y. The propagation and excitation of surface waves in an absorbing layer. Progress In Electromagnetics Research. 1998(19): 49–91.
[12] Ufimtsev, P. Y., Ling R. T., and Scholler J. D. Transformation of surface waves in homogeneous absorbing layers. IEEE Trans. on Antennas and Propagation. 2000. 48(2): 214-222.
[13] Ufimtsev, P. Y. and Ling R. T. New results for the properties of TE surface waves in absorbing layers. IEEE Trans. on Antennas and Propagation. 2001. 49(10): 1445-1452.
[14] Zhou P.H., Deng L.J.,Xie J.L., etc. A study about Fe-Ni mechanical alloying process by dry and wet method[J]. Journal of Electronic Science and Technology of China. 2005(2):164-167.
[15] Xie J.L., Han M.G., Chen L., et al. Microwave-absorbing properties of NiCoZn spinel ferrites[J]. Journal of magnetism and magnetic materials. 2007, 314(1):37-42.
[16] Han M.G., Ou Y., Liang D.F., et al. Annealing effects on the microwave permittivity and permeability properties of Fe79Si16B5 microwires and their microwave absorption performances[J]. Chinese Physics B. 2009, 18(3):1261.
[17] Han M.G., Ou Y., Chen W.B., Deng L.J., etc. Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol-gel method with and without polyethylene glycol added[J]. Journal of alloys and compounds. 2009, 474(1):185-189.
[18] Wang X., Zhang L., Guan M, et al. A ferromagnetic resonance numerical computation method of ferromagnetic Nano-sphere[J]. Advanced Materials Research. 2013(643):157-161.
[19] Barkeshli K., J. L. Volakis. Scattering from narrow rectangular filled grooves. IEEE Trans. Antennas Propagat., 1991, 39(6):804-810.
[20] Song Z.J., Xie J.L., Zhou P.H., et al. Toughened polymer composites with flake carbonyl iron powders and their electromagnetic/absorption properties[J]. Journal of Alloys and Compounds. 2013 (551):677-681.
[21] Song Z.J., Xie J.L., Peng J.N., et al. Toughened epoxy filled with ferromagnetic particles as high temperature resistant microwave absorbing coating[J]. PIERS ONLINE. 2011(7):646-650.
[22] Chen H.Y., Zhang H. B., and Deng L. J. Design of an ultra-thin magnetic-type radar absorber embedded with FSS[J]. IEEE Antennas and Wireless Propagation Letters. 2010(9):899-901.
[23] Chen H.Y., Deng L.J., Zhou P.H., et al. Tapered impedance loading for suppression of edge scattering[J]. IET Microwave Antenna & Propagation. 2011, 5(14):1744-1749.
[24] Chen H.Y., Xie J.L., Zhu Z.W., Deng L.J. Method of tapered resistive sheet loading for controlling edge scattering[J]. Microwave and Optical Technology Letters. 2013, accepted.
[25] Liu Zhanhe (刘占合), Huang Peilin(黄沛霖), Wu Zhe(武哲), Gao xu(高旭). 基于MLFMA的飞行器锯齿边板散射特性分析[J]. J. Beijing Univ.Aeronaut. Astronaut.(北京航空航天大学学报),2008,34(5):499-502.
[26] Chen H.Y., Deng L.J., Zhou P.H. Suppression of surface wave from finite conducting surfaces with impedance loading at margins[J]. Journal of Electromagneitcs Waves Application. 2010, 24(14/15):1977-1989.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(59493300);教育部博士点基金资助项目(9800462)_____________________ 收稿日期: 2000-03-11;修订日期:2000-03-06
更新日期/Last Update: 2013-08-09