[1]林 鹤,马衍伟.新型铁基超导线带材的研究进展[J].中国材料进展,2013,(9):522-532.[doi:10.7502/j.issn.1674-3962.2013.09.02]
 LIN He,MA Yanwei.Recent advances in iron-based superconducting wires and tapes[J].MATERIALS CHINA,2013,(9):522-532.[doi:10.7502/j.issn.1674-3962.2013.09.02]
点击复制

新型铁基超导线带材的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第9期
页码:
522-532
栏目:
特约研究论文
出版日期:
2013-09-30

文章信息/Info

Title:
Recent advances in iron-based superconducting wires and tapes
作者:
林 鹤马衍伟
(中国科学院电工研究所 应用超导重点实验室,北京100190)
Author(s):
LIN He MA Yanwei
(Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190China)
关键词:
铁基超导材料线带材粉末装管法制备工艺临界电流密度
分类号:
TM262
DOI:
10.7502/j.issn.1674-3962.2013.09.02
文献标志码:
A
摘要:
新型铁基超导材料具有较高的临界转变温度、超高的上临界场和非常小的各向异性等优点,在高场磁体领域应用前景广阔。目前粉末装管法已广泛应用于铁基超导线带材的制备,临界电流密度在4.2 K和10 T下高达1.7×104A/cm2, 接近实用化水平。本文首先介绍了铁基超导材料的典型结构与基本超导特性。接着详细评述了铁基超导粉末的合成和粉末装管法的工艺流程,主要包括元素配比、热处理工艺、以及粉末装管原位法和先位法的对比分析。然后重点探讨了影响线带材临界电流密度的因素及其关键制备技术。通过包套材料的选择、掺杂改性、热等静压和轧制织构等方法来解决线带材中包套与超导芯易反应、杂相多、致密度低以及晶界弱连接等难题。此外还简要介绍了多芯线带材的最新研究进展。最后,对铁基超导线带材的发展趋势做了展望。
Abstract:
The newly discovered iron-based superconductors have caused great interest for high-field applications due to their well properties such as high transition temperature, ultrahigh upper critical field and low anisotropy. The iron-based superconducting wires and tapes are commonly prepared by the powder-in-tube (PIT) process. In this paper, we focus on the fabrication techniques to realize high Jc values such as chemical composition, optimal heating conditions, sheath material, doped elements, hot isostatic press and rolling texture,particularly for 122-type pnictide wires and tapes. Excitingly, so far high transport Jc value of 1.7×104 A/cm2 at 4.2 K and 10 T has been obtained in iron-based tapes, closed to the practical level. Finally, a perspective and future development of PIT pnictide wires and tapes are given

参考文献/References:

References
[1] Bednorz J G, Muller K A. Possible High Tc?Superconductivity in the Ba?La?Cu?O System [J]. Z Phys, 1986, 64(2):189-193.
[2] Kamihara Y, Watanabe T, Hirano M, et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x?= 0.05?0.12) with?Tc?= 26 K [J]. J Am Chem Soc, 2008, 130(11): 3296-3297.
[3] Ren Z A, Yang J, Yi W, et al. Superconductivity at 55K in Iron-Based F-doped Layered Quaternary Compound Sm[O1-xFx]FeAs [J]. Chin Phys Lett, 2008, 25(6): 2215-2216.
[4] Rotter M, Tegel M, Johrendt D. Superconductivity at 38?K in the Iron Arsenide (Ba1-xKx)Fe2As2 [J]. Phys Rev Lett, 2008, 101(10): 107006.
[5] Sasmal K, Lv B, Lorenz B, Guloy A, et al. Superconducting Fe-Based Compounds (A1-xSrx)Fe2As2?with?A=K and Cs with Transition Temperatures up to 37?K [J]. Phys Rev Lett, 2008, 101(10):107007.
[6] Qi Y P, Gao Z S, Wang L, et al. Superconductivity at 34.7 K in the Iron Arsenide Eu0.7Na0.3Fe2As2 [J]. New Journal of Physics, 2008, 10(12):123003.
[7] Wang X C, Liu Q Q, Lv Y X, et al. The Superconductivity at 18 K in LiFeAs System [J]. Solid State Commun, 2008, 148(11-12):538-540.
[8] Hsu F C, Luo J Y,Yeh K W, et al. Superconductivity in the PbO-Type Structure α-FeSe [J]. Proc Natl Acad Sci, 2008, 105(38):14262-14264.
[9] Ivanovskii A L. New High-Temperature Superconductors Based on Rare-earth and Transition Metal Oxyarsenides and Related Phases: Synthesis, Properties and Simulations [J]. Phys Usp, 2008, 51(12):1229-1260.
[10] Jaroszynski J, Hunte F, Balicas L, et al. Upper Critical Fields and Thermally-Activated Transport of NdFeAsO0.7F0.3 Single Crystal [J]. Phys Rev B, 2008, 78(17):174523.
[11] Yuan H Q, Singleton J, Balakirev F F, et al. Nearly Isotropic Superconductivity in (Ba, K) Fe2As2 [J]. Nature, 2009, 457:565-568.
[12] Gurevich A. Iron-Based Superconductors at High Magnetic Fields [J]. Rep Prog Phys 2011, 74(12):124501.
[13] Moll P J W, Puzniak R, Balakirev F, et al. High Magnetic-Field Scales and Critical Currents in SmFeAs (O, F) Crystals [J]. Nat Mater, 2010, 9:628-633.
[14] Wang X L, Ghorbani S R, Lee Sung-Ik, et al. Very Strong Intrinsic Flux Pinning and Vortex Avalanches in (Ba, K)Fe2As2 Superconducting Single Crystals [J]. Phys Rev B, 2010, 82(2):024525.
[15] Ma Y W. Progress in Wire Fabrication of Iron-Based Superconductors [J]. Supercond Sci Technol, 2012, 25(11):113001.
[16] Fujioka M, Kota T, Matoba M, et al. Effective Ex-situ Fabrication of F-Doped SmFeAsO Wire for High Transport Critical Current Density [J]. Appl Phys Express, 2011, 4(6):063102.
[17] Wang C L,Wang L, Gao Z S, et al. Enhanced Critical Current Properties in Ba0.6K0.4 + XFe2As2 Superconductor by Overdoping of Potassium [J]. Appl Phys Lett, 2011, 98(4):042503.
[18] Yeoh W K, Gault B, Cui X Y, et al. Direct Observation of Local Potassium Variation and Its Correlation to Electronic Inhomogeneity in (Ba1-xKxFe2As2 Pnictide [J]. Phys Rev Lett, 2011, 106(24):247002.
[19] Wang L. Fabrication and Properties of New Iron-Based Superconducting Wires and Tapes. Phd Thesis IEE CAS, Beijing, 2011.
[20] Zhang Z Y, Qi Y P, Wang L, et al. Effects of Heating Conditions on the Microstructure and Superconducting Properties of Sr0.6K0.4Fe2As2 [J]. Supercond Sci Technol, 2010, 23(6):065009.
[21] Wang C L, Gao Z S, Wang L, et al. Low-Temperature Synthesis of SmO0.8F0.2FeAs Superconductor with Tc = 56.1?K [J]. Supercond Sci Technol, 2010, 23(5):055002.
[22] Si W D, Zhou J, Jie Q, et al. Iron-Chalcogenide FeSe0.5Te0.5 Coated Superconducting Tapes for High Field Applications [J]. Appl Phys Lett, 2011, 98(26):262509-262503.
[23] Wang C L, Yao C, Zhang X P, et al. Effect of Starting Materials on the Superconducting Properties of SmFeAsO1? xFx Tapes [J]. Supercond Sci Technol, 2012, 25(3):035013.
[24] Yamamoto A, Polyanskii A A, Jiang J, et al. Evidence for Two Distinct Scales of Current Flow in Polycrystalline Sm and Nd Iron-Oxypnictides [J]. Supercond Sci Technol, 2008, 21(9):095008.
[25] Wang L, Gao Z S, Qi Y P, et al. Structural and Critical Current Properties in Polycrystalline SmFeAsO1? xFx [J]. Supercond Sci Technol, 2008, 22(5):015019.
[26] Lee S, Jiang J, Weiss J D, et al. Weak-Link Behavior of Grain Boundaries in Superconducting Ba(Fe1-xCox)2As2 Bicrystals [J]. Appl Phys Lett, 2009, 95(21):212505-212503.
[27] Gao Z S, Wang L, Qi Y P, et al. Preparation of LaFeAsO0.9 F0.1 Wires by the Powder-in-tube Method [J]. Supercond Sci Technol, 2008, 21(10):105024.
[28] Gao Z S, Wang L, Qi Y P, et al. Superconducting Properties of Granular SmFeAsO1? xFx Wires with Tc = 52 K Prepared by the Powder-in-tube Method [J]. Supercond Sci Technol, 2008, 21(11):112001.
[29] Zhang X P, Wang L, Qi Y P, et al. Superconductivity of Powder-in-tube Sr0.6K0.4Fe2As2 Wires [J]. Physica C, 2009, 469(13):717-720.
[30] Zhang X P,Wang L,Qi Y P, et al. Effect of Sheath Materials on the Microstructure and Superconducting Properties of SmO0.7F0.3FeAs wires [J]. Physica C, 2010, 470(2):104-108.
[31] Wang L, Qi Y P, Wang D L, et al. Large Transport Critical Currents of Powder-in-tube Sr0.6K0.4Fe2As2/Ag Superconducting Wires and Tapes [J]. Physica C, 2010, 470(2):183-186.
[32] Togano K, Matsumoto A, Kumakura H. Large Transport Critical Current Densities of Ag Sheathed (Ba,K)Fe2As2+Ag Superconducting Wires Fabricated by an Ex-situ Powder-in-Tube Process [J]. Appl Phys Express, 2011, 4(4):043101.
[33] Ding Q P, Prombood T, Tsuchiya Y, et al. Superconducting Properties and Magneto-optical Imaging of Ba0.6 K0.4 Fe2 As2 PIT Wires with Ag Addition [J]. Supercond Sci Technol, 2012, 25(3):035019.
[34] Weiss J D,Tarantini C, Jiang J, et al. High Intergrain Critical Current Density in Fine-Grain (Ba0.6K0. 4) Fe2As2 Wires and Bulks [J]. Nat Mater, 2012, 11:682-685.
[35] Wang L, Qi Y P, Zhang X P, et al. Textured Sr1?xKxFe2As2 Superconducting Tapes with High Critical Current Density [J]. Physica C, 2011, 471(23-24):1689-1691.
[36] Lee S, Jiang J, Zhang Y, et al. Template Engineering of Co-doped BaFe2As2 Single-Crystal Thin Films [J]. Nat Mater, 2010, 9:397-402.
[37] Mohan S, Taen T, Yagyuda H, et al. Transport and Magnetic Properties of Co-Doped BaFe2As2 Epitaxial Thin Films Grown on MgO Substrate [J]. Supercond Sci Technol, 2010, 23(10):105016.
[38] Kametani F, Li P, Abraimov D, et al. Intergrain Current Flow in a Randomly Oriented Polycrystalline SmFeAsO0.85 Oxypnictide [J]. Appl Phys Lett, 2009, 95(14):142502-142503.
[39] Tamegai T, Ding Q P, Inoue H, et al. Magneto-Optical Characterizations of Iron-based Superconducting Wires and Tapes [J]. IEEE Trans Appl Supercond, 2011, 23(3):7300304.
[40] Ma Y W, Zhang X P, Nishijima G, et al. Significantly Enhanced Critical Current Densities in MgB2 Tapes Made by a Scaleable Nanocarbon Addition Route [J]. Appl Phys Lett, 2006, 88(7):072502.
[41] Wang L, Qi Y P, Gao Z S, et al. The Role of Silver Addition on the Structural and Superconducting Properties of Polycrystalline Sr0.6K0.4Fe2As2 [J]. Supercond Sci Technol, 2010, 23(2):025027.
[42] Qi Y P, Wang L, Wang D L, et al. Transport Critical Currents in the Iron Pnictide Superconducting Wires Prepared by the Ex-situ PIT Method [J]. Supercond Sci Technol, 2010, 23(5):055009.
[43] Gao Z S, Wang L, Yao C, et al. High Transport Critical Current Densities in Textured Fe-Sheathed Sr1-xKxFe2As2+Sn Superconducting Tapes [J]. Appl Phys Lett, 2011, 99(24):242504-242506.
[44] Ni N, Bud’ko S L, Kreyssig A, et al. Anisotropic Thermodynamic and Transport Properties of Single-Crystalline Ba1?xKxFe2As2 (x=0 and 0.45) [J]. Phys Rev B, 2008, 78(1):014507.
[45] Gao Z S, Ma Y W, Yao C, et al. High Critical Current Density and Low Anisotropy in Textured Sr1? xKxFe2As2Tapes for High Field Applications [J]. Scientific reports, 2012, 2: 998.
[46] Yamamoto A, Jiang J, Kametani F, et al. Evidence for Electromagnetic Granularity in Polycrystalline Sm1111 Iron-Pnictides with Enhanced Phase Purity [J]. Supercond Sci Technol, 2011, 24(4):045010.
[47] Moore J D, Morrison K,Yates K A, et al. Evidence for Supercurrent Connectivity in Conglomerate Particles in NdFeAsO1?δ [J]. Supercond Sci Technol, 2008, 21(9):092004.
[48] Prozorov R, Tillman M E, Mun E D, et al. Intrinsic Magnetic Properties of the Superconductor NdFeAsO0. 9F0. 1 from Local and Global Measurements [J]. New J Phys, 2009, 11(3):035004.
[49] Wang C L, et al. Large Transport Jc in Sn-Added SmFeAsO1-xFx Tapes Prepared by an Ex-situ PIT Method. Submitted in Supercond Sci Technol.
[50] Katase T, Ishimaru Y, Tsukamoto A, et al, Advantageous Grain Boundaries in Iron Pnictide Superconductors [J]. Nat Commun, 2011, 2:409.
[51] Sandhage K H, Riley G N, Carter W L. Critical Issues in the OPIT Processing of High-Jc BSCCO Superconductors [J]. JOM-US, 1991, 43(3):21-25.
[52] Yamada Y, Obst B, Flukiger R. Microstructural Study of Bi(2223)/Ag Tapes with Jc (77 K, 0 T) Values of up to 3.3*104 A cm-2 [J]. Supercond Sci Technol, 1991, 4:165.
[53] Ma Y W, Yao C, Zhang X P, et al. Large Transport Critical Currents and Magneto-Optical Imaging of Textured Sr1? xKxFe2As2 Superconducting Tapes [J]. Supercond Sci Technol, 2013, 26(3):035011.
[54] Togano K, Gao Z S, Taira H, et al. Enhanced High-Field Transport Critical Current Densities Observed for the Ex-situ PIT Processed Ag/(Ba, K) Fe2As2 Thin Tapes [J]. 2013, arXiv:1302.0482.
[55] Palenzona A, Sala A, Bernini C, et al. A New Approach For Improving Global Critical Current Density in Fe(Se0.5Te0.5) Polycrystalline Materials [J]. Supercond Sci Technol, 2012, 25(11):115018.
[56] Mizuguchi Y, Izawa H, Ozaki T, et al. Transport Properties of Single-?and Three-Core FeSe Wires Fabricated by a Novel Chemical-Transformation PIT Process [J]. Supercond Sci Technol, 2011, 24(12):125003.
[57] Ozaki T, Deguchi K, Mizuguchi Y, et al. Fabrication of Binary FeSe Superconducting Wires by Diffusion Process. J Appl Phys, 2012, 111(11):112620.
[58] Yao C, Ma Y W,Wang C D, et al. Fabrication and Transport Properties of Sr0.6K0.4Fe2As2 Multifilamentary Superconducting Wires [J]. Appl Phys Lett, 2013, 102(8): 082602.

更新日期/Last Update: 2013-10-10