[1]闫果*,王庆阳,刘国庆,等.二硼化镁超导线带材及磁体应用研究进展[J].中国材料进展,2013,(9):001-10.[doi:10.7502/j.issn.1674-3962.2013.09.05]
 YAN Guo*,WANG Qingyang,XIONG Xiaomei,et al.Research Progress of MgB2 superconducting wires and tapes and superconducting magnet application[J].MATERIALS CHINA,2013,(9):001-10.[doi:10.7502/j.issn.1674-3962.2013.09.05]
点击复制

二硼化镁超导线带材及磁体应用研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第9期
页码:
001-10
栏目:
特约研究论文
出版日期:
2013-09-30

文章信息/Info

Title:
Research Progress of MgB2 superconducting wires and tapes and superconducting magnet application
文章编号:
1674—3962 (2009) 01-
作者:
闫果1*王庆阳2刘国庆2熊晓梅2潘熙锋1冯勇1
(1西部超导材料科技股份有限公司 超导材料制备国家工程实验室,西安 710016)
Author(s):
YAN Guo1* WANG Qingyang2 XIONG Xiaomei2 LIU Guoqin2 PAN Xifeng1 FENG Yong1
1 National Engineering Labortary for Superconducting Materials, Western Superconducting Technologies Co. Ltd, Xin, 710016 2 Northwest Institute for Nonferrous Metal Research, Xin, 710018
关键词:
超导材料MgB2超导线带材超导磁体粉末装管法
DOI:
10.7502/j.issn.1674-3962.2013.09.05
文献标志码:
A
摘要:
由于具有超导转变温度(39K)较高,晶体结构简单,原材料成本低廉以及长线制备容易等一系列特点,金属间化合物二硼化镁(MgB2)超导体自2001年被日本科学家发现以来,引起人们广泛的关注,被认为是目前最有可能首先实现大规模工业应用的超导材料。尤其在制冷机工作温度(15~20 K)、较低磁场(1~2T)条件下的医疗核磁共振成像仪(MRI)超导磁体应用上有着广泛的前景。本文主要围绕实用化MgB2超导长线(带)制备研究而展开,重点回顾了近年来粉末套管法、连续粉末装管成型法及中心镁扩散法等MgB2超导线(带)材制备及加工方面的最新研究进展;同时综述了在MgB2超导线带材工程临界电流密度性能改进方面的最新研究工作;最后,对近几年来MgB2超导磁体及线圈等应用研究进展进行了回顾。
Abstract:
Due to MgB2 superconductor has a series of advantages, like as high superconducting transition temperature Tc, simple binary crystal structure, cheap raw-materials cost, easy fabrication process of long wire and so on, it have attracted a lot of attentions, after discovered by Japanese scientists at 2001, and is thought as one of the most promising practical superconducting materials. Especially, it has a huge potential at the application of superconducting magnets of magnetic resonance imaging (MRI) system with the operating conditions of 15~20K and 1~2T. In this paper, we reviewed the recent development of MgB2 superconducting long wires and tapes, made by Powder-In-Tube method (PIT), Continuous Tube Filling and Forming process (CTFF) and Internal Magnesium Diffusion method (IMD). Research progress at superconducting properties of engineering critical current density of MgB2 superconducting wires has also been commented, and the latest studies on MgB2 superconducting magnets are reviewed.

参考文献/References:

[1].C. Buzea and T. Yamashita, Review of the superconducting properties of MgB2. Supercond. Sci. Technol., 2001, 14: R115–R146.
[2].H. Yamada, N. Uchiyama, H. Kumakura, et al., Superconducting properties of Aromatic Hydrocarbon- Added Powder-in-Tube MgB2/Fe Tapes. IEEE Trans. on Appl. Supercond., 2007, 17: 2850-2853
[3].K. J. Song, N. J. Lee, H. M. Jang, et al., Single-filament composite MgB2/stainless-steel ribbons by powder-in-tube process, Physica C, 2002, 370: 21–26
[4].B Q Fu, Y Feng, G Yan, et al., High critical current density in Ti-doped MgB2/Ta/Cu tape by powder-in-tube process. J. Appl. Phys., 2002, 92(12): 7341-7344
[5].Kumakura H, Matsumoto A, Fujii H, et al., High transport critical current density obtained for powder-in-tube processed MgB2 tapes and wires using stainless steel and Cu–Ni tubes. Appl. Phys. Lett., 2001, 79: 2435-2437
[6].V. Braccini, D. Nardelli, R. Penco, et al., Development of ex situ processed MgB2 wires and their applications to magnets. Physica C, 2007,456: 209-217
[7].K. Tanaka, H. Kitaguchi, H. Kumakura, et al., Fabrication and Transport Properties of MgB2 Mono-Core Wire and Solenoid Coil. IEEE Trans. on Appl. Supercond., 2005, 15(2): 3180-3183
[8].M D Sumption, M Bhatia, X Wu, Multifilamentary, in situ route, Cu-stabilized MgB2 strands. Supercond. Sci. Technol., 2005, 18: 730-734
[9].K Togano, J Hur, A Matsumoto, et al., Microstructures and currents of single- and multi-filamentary MgB2 wires fabricated by an internal Mg diffusion process. Supercond. Sci. Technol. 2010, 23: 085002
[10].J. Hur, K. Togano, A. Matsumoto, et al., High Critical Current Density MgB2/Fe Multicore Wires Fabricated by an Internal Mg Diffusion Process. IEEE Trans. on Appl. Supercond., 2009, 19: 2735-2738
[11].M. Putti, V. Braccini, C. Ferdeghini, et al., Neutron irradiation of Mg11B2: From the enhancement to the suppression of superconducting properties, Appl. Phys. Lett. 2005, 86: 112503
[12].Y. Bugoslavsky, L. F. Cohen, G. K. Perkins, et al., Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation, Nature. 2001, 410: 561-563
[13].Tania M. Silver, Joseph Horvat, Mark Reinhard, et al., Uranium Doping and Thermal Neutron Irradiation Flux Pinning Effects in MgB2, IEEE Trans. on Appl. Supercond., 2004, 14 (1): 33-39
[14].K. Agatsuma, M. Furuse, M. Umeda, et al., Properties of MgB2 superconductor by doping impurity of SiC, graphite, C60, and C nano-tube. IEEE Trans. on Appl. Supercond., 2006, 16 (2): 1407-1410
[15].S. X. Dou, S. Soltanian, J. Horvat, et al., Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping, Appl. Phys. Lett., 2002, 81: 3419-3421,
[16].M. D. Sumption, M. Bhatia, M. Rindfleisch, et al., Large upper critical field and irreversibility field in MgB2 wires with SiC additions. Appl. Phys. Lett. 2005, 86: 092507
[17].X. Xu, S. X. Dou, X. L. Wang, et al., Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor. Supercond. Sci. Technol. 2010, 23: 085003
[18].Y. W. Ma, A. X. Xu, X. H. Li. et al., Enhanced Critical Current Density of MgB2 Superconductor Synthesized in High Magnetic Fields, Jpn. J. Appl. Phys. 2006, 45: L493-L496
[19].S. X. Dou, W. K. Yeoh, O. Shcherbakova. et al., Magnetic field processing to enhance critical current densities of MgB2 superconductors, Appl. Phys. Lett., 2006, 89: 202504
[20].X. Xu, J H Kim, W. K. Yeoh, et al., Improved Jc of MgB2 superconductor by ball milling using different media. Supercond. Sci. Technol. 2006, 19: L47-L50
[21].G. Romano, M. Vignolo, V. Braccini, et al., High-energy ball milling and synthesis temperature study to improve superconducting properties of MgB2 ex-situ tapes and wires. IEEE Trans. on Appl. Supercond., 2009, 19 (3): 2706-2709
[22].C. E. J. Dancer, D. Prabhakaran, A. Crossley, et al., The effects of attrition and ball milling on the properties of magnesium diboride. Supercond. Sci. Technol. 2010, 23: 065015 (10pp)
[23].J. H. Kim, Y. Heo, A. Matsumoto, H. Kumakura, M. Rindfleisch, M.Tomsic, S. X. Dou, Comparative study of mono- and multi-filament MgB2 wires with different boron powders and malic acid addition, Supercond. Sci. Technol. 2010, 23: 075014.
[24].X.F. Pan, A. Matsumoto, H. Kumakura, Y. Zhao, G. Yan, Y. Feng, Combined effect of upper critical field and flux pinning on enhancing critical current density of in-situ MgB2/Fe tapes with various carbon sources simultaneously doping, Appl. Phys. Express., 2012, 5: 013102
[25].Chengduo Wang, Yanwei Ma, Xianping Zhang, et al, Significant improvement in criticalcurrent densities of C-doped MgB2 tapes made by high-energy ball milling, Supercond. Sci. Technol. 25 (2012) 075010 .
[26].H Fujii, K Ozawa and H Kitaguchi, Improved critical current density in ex situ processed carbon-substituted MgB2 tapes by Mg addition, Supercond. Sci. Technol. 25 (2012) 065008.
[27].Dongliang Wang, Zhaoshun Gao, Xianping Zhang, Chao Yao, Chengduo Wang, Shuxia Zhang, Yanwei Ma, Satoshi Awaji and Kazuo Watanabe, Enhanced Jc–B properties of MgB2 tapes by yttrium acetate doping, Supercond. Sci. Technol. 24 (2011) 075002.
[28].S.J. Ye, M. Song, A. Matsumoto, K. Togano, et. al, Comparison of SiC and/or toluene additives to the critical current density of internal Mg diffusion-processed MgB2 wires, ISS2011 (WTP-42), Japan, Dec, 2012.
[29].J. Viljamaa, A. Kario, E. Dobro?ka, M. Reissner, M. Kulich, P. Ková?, W. H??ler, Effect of heat treatment temperature on superconducting performance of B4C added MgB2/Nb conductors, Physica C, 2012, 473: 34-40.
[30].M S A Hossain, C Senatore, M Rindfleisch, et al., Improvement of Jc by cold high pressure densification of binary, 18-filament in situ MgB2 wires, Supercond. Sci. Technol. 24 (2011) 075013
[31].Flukiger R, Hossain M S A and Senatore C. Strong enhancement of Jc and Birr in binary in situ MgB2 wires after cold high pressure densification, Supercond.Sci. Technol. 22(2009) 085002
[32].Hossain M S A, Senatore C, Flukiger R, Rindfleisch M A,Tomsic M J, Kim J H and Dou S X. The enhanced Jc and Birr of in situ MgB2 wires and tapes alloyed with C4H6O5 (malic acid) after cold high pressure densification, Supercond. Sci. Technol. 22 (2009) 095004
[33].P Kovac, I Husek, T Melisek and L Kopera, Current densities of thin filament MgB2/Ti/GlidCop? wire, Supercond. Sci. Technol. 24 (2011) 105006.
[34].P Kovac, T Melisek, L Kopera, J Kovac and I Husek, Selected properties of GlidCop R sheathed MgB2 wires, Supercond. Sci. Technol. 25 (2012) 095008.
[35].Keisuke. Kishimoto, Satoshi. Chono, Osuke. Miura, et.al, Effect of cubic anvil hot pressing on the critical current densities for in-situ PIT MgB2 tapes, ISS2011(WTP-41), Japan, Dec, 2012.
[36].P. Ková?I, Hu?ek, T. Meli?ek, Improved current density of filamentary MgB2 wire by two-stage formation, Physica C, 2012, 475:43-45.
[37].P Kovac, I Husek, T Melisek and L Kopera, Filamentary MgB2 wires twisted before and after heat treatment, Supercond. Sci. Technol. 24 (2011) 115006.
[38].M A Susner, T W Daniels, M D Sumption, et al, Drawing induced texture and the evolution of superconductive properties with heat treatment time in powderin-tube in situ processed MgB2 strands, Supercond. Sci. Technol. 25 (2012) 065002.
[39].K W See, X Xu, J Horvat, C D Cook and S X Dou, Transport critical current of MgB2 wires:pulsed current of varying rate compared to direct current method, Supercond. Sci. Technol. 24 (2011) 105009.
[40].H Fujii and K Ozawa, Superconducting properties of PIT-processed MgB2 tapes using Mg(BH4)2 precursor, Supercond. Sci. Technol. 24 (2011) 095009.
[41].M. Wo?niak, S. C. Hopkins, D. Gajda, B. A. Glowacki, The effect of copper additions in the synthesis of in situ MgB2 Cu-sheathed wires, Physica C, 2012, 477:66-73.
[42].J C Grivel, N H Andersen, P G A P Pallewatta, et al, Influence of Bi, Se and Te additions on the formation temperature of MgB2, Supercond. Sci. Technol. 25 (2012) 015010.
[43].W. Ha?ler, M. Herrmann et al, Further increase of the critical current density of MgB2 tapes with nanocarbon-doped mechanically alloyed precursor, Supercond. Sci. Technol. 2008, 21: 062001.
[44].E Perini, G Giunchi, Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing, Supercond. Sci. Technol. 22 (2009) 045021
[45].Elena Perini, Giovanni Giunchi, Michela Geri, Antonio Morandi, Experimental and Numerical Investigation of the Levitation Force Between Bulk Permanent Magnet and MgB2 Disk, IEEE Transactions On Applied Superconductivity, 2009, 19 (3): 2124-2128
[46].Xiao Hang Li, Xiao Ji Du, Qing Bao, Ling Qi Kong, Li Yang Ye, Li Ye Xiao, Design, development and experiment of a 1.5 T MgB2 superconducting test magnet, Cryogenics. 49 (2009) 286–290
[47].N. Atomura, T. Takahashi, H. Amata, T. Iwasaki, K. Son, D. Miyagi, M. Tsuda, T. Hamajima, T. Shintomi, Y. Makida, T. Takao, K. Munakata, M. Kajiwara, Conceptual design of MgB2 coil for the 100 MJ SMES of advanced superconducting power conditioning system (ASPCS), Physics Procedia, 27, (2012): 400–403.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(59493300);教育部博士点基金资助项目(9800462)_____________________ 收稿日期: 2000-03-11;修订日期:2000-03-06
更新日期/Last Update: 2013-08-30