[1]胡庆,陈晓峰 *,董艳梅,等.微纳米生物活性玻璃的细胞基因激活性能研究[J].中国材料进展,2013,(10):001-2.[doi:10.7502/j.issn.1674-3962.2013.10.01]
 Hu Qing,,et al.Biocompatibility and Gene activation of Micro/Nano-Bioactive Glasses[J].MATERIALS CHINA,2013,(10):001-2.[doi:10.7502/j.issn.1674-3962.2013.10.01]
点击复制

微纳米生物活性玻璃的细胞基因激活性能研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第10期
页码:
001-2
栏目:
出版日期:
2013-10-31

文章信息/Info

Title:
Biocompatibility and Gene activation of Micro/Nano-Bioactive Glasses
文章编号:
1674—3962 (2013)10
作者:
胡庆123陈晓峰1 23*董艳梅4宫玮玉4
(1.华南理工大学材料科学与工程学院,广东 广州 510640)
Author(s):
Hu Qing1 2 3 Chen xiaofeng1 2 3* Dong yanmei4 Gong weiyu4
(1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R China) (2 National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China) (3 Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China) (4 Peking university school of stomatology, Beijing 100081, China)
关键词:
微纳米生物活性玻璃溶胶-凝胶技术模板仿生基因激活
分类号:
TG 146.4
DOI:
10.7502/j.issn.1674-3962.2013.10.01
文献标志码:
A
摘要:
微纳米生物材料目前已成为生物医用材料领域一个研究热点和难点。大量研究表明具有微纳米结构特征的生物材料表现出了积极的生物学响应。生物活性玻璃(BG)具有较高的生物活性、生物相容性,是一类重要的骨修复材料。而微纳米生物活性玻璃(MNBG)因其具有特殊的形态结构和理化性能,引起众多研究者的关注。但是目前对MNBG的研究还主要集中在制备、表征以及其表面了类骨羟基磷灰石矿物在SBF溶液中的形成活性等方面,关于MNBG的细胞相容性以及基因激活性能方面的研究还鲜有报道。本文通过溶胶-凝胶法结合模板仿生技术合成了具有特殊微纳米结构和形态的生物活性玻璃(MNBG),并将其浸提液与MG-63细胞共培养,研究生物玻璃溶出物对细胞增殖,成骨相关基因和蛋白表达的影响,结果证明相比于传统的熔融法制备的生物玻璃(45S5)浸提液,MNBG浸提液能够明显促进细胞增殖,激活细胞成骨相关基因,上调相关蛋白的表达,为设计和制备具有基因介导作用的新型生物活性玻璃骨修复材料提供了理论依据。
Abstract:
Micro/nano biological material has become the research hotspot and difficulty in the field of biomedical materials. A number of studies have shown that micro/nano structure of biological material can show a positive biological response. Bioactive glass (BG) has the high apatite-forming bioactivity and biocompatibility. BG is the ideal biomaterial for bone tissue regeneration. Micro/nano-bioactive glass (MNBG) caused much attention because of the special morphology and physicochemical properties, but the research about MNBG only focused on preparation and the in vitro apatite-forming bioactivity, few papers have focused on the biocompatibility and gene activation. This study used sol-gel method combining biological organic templates to design micro/nano structure of bioactive glasses. The effects of MNBG and traditional melt 45S5 ionic dissolution products on proliferation, expression of osteogenic genes, proteins were investigated. The results showed that MNBG promoted cell-proliferation, up-regulated the expression of osteogenic genes and proteins. This work will provide a reference for design of specific morphology of the bioactive bone repair materials in the future

参考文献/References:

References
[1] Hench L, Pantano Jr C, Buscemi P, Greenspan D (1977) Analysis of bioglass fixation of hip prostheses. Journal of Biomedical Materials Research 11 (2):267-282
[2] Hench LL (2006) The story of Bioglass?. Journal of Materials Science: Materials in Medicine 17 (11):967-978
[3] Hench L, Wilson J (1998) Bioactive glasses: Present and future. Bioceramics 11:31-36
[4] Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74 (7):1487-1510
[5] Hench LL (2009) Genetic design of bioactive glass. Journal of the European Ceramic Society 29 (7):1257-1265
[6] Bo L, et al. (2010) Fabrication, structure and biological properties of organic acid-derived sol–gel bioactive glasses. Biomed Mater 5 (5):054103
[7] Lei B, Chen X, Han X, Li Z (2011) Unique physical–chemical, apatite-forming properties and human marrow mesenchymal stem cells (HMSCs) response of sol–gel bioactive glass microspheres. J Mater Chem 21 (34):12725-12734
[8] Lei B, Chen X, Han X, Zhou J (2012) Versatile fabrication of nanoscale sol-gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 22 (33):16906-16913
[9] Clover J, Gowen M (1994) Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 15 (6):585-591
[10] Billiau A, Edy V, Heremans H, Van Damme J, Desmyter J, Georgiades J, De Somer P (1977) Human interferon: mass production in a newly established cell line, MG-63. Antimicrobial agents and chemotherapy 12 (1):11-15
[11] Fleury C, Petit A, Mwale F, Antoniou J, Zukor DJ, Tabrizian M, Huk OL (2006) Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials 27 (18):3351-3360
[12] Stephansson SN, Byers BA, Garc??a AJ (2002) Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials 23 (12):2527-2534
[13] Tsai S-W, Hsu F-Y, Chen P-L (2008) Beads of collagen–nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomaterialia 4 (5):1332-1341
[14] Sun J, Li J, Liu X, Wei L, Wang G, Meng F (2009) Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomedicine & Pharmacotherapy 63 (9):650-657
[15] Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature materials 6 (12):997-1003
[16] PAUTKE C, SCHIEKER M, TISCHER T, KOLK A, NETH P, MUTSCHLER W, MILZ S (2004) Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer research 24 (6):3743-3748。

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(59493300);教育部博士点基金资助项目(9800462)_

更新日期/Last Update: 2013-10-10