[1]黄千里,刘渊声,冯庆玲. 珍珠层,一种具有潜力的天然骨修复材料[J].中国材料进展,2013,(10):023-31.[doi:10.7502/j.issn.1674-3962.2013.10.03]
 Qianli Huang,Yuansheng Liu,Qingling Feng. Nacre, a potential natural biomaterial for bone regeneration[J].MATERIALS CHINA,2013,(10):023-31.[doi:10.7502/j.issn.1674-3962.2013.10.03]
点击复制

 珍珠层,一种具有潜力的天然骨修复材料()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第10期
页码:
023-31
栏目:
特约研究论文
出版日期:
2013-10-31

文章信息/Info

Title:
 Nacre, a potential natural biomaterial for bone regeneration
作者:
 黄千里刘渊声冯庆玲
 (清华大学材料学院先进材料教育部重点实验室,北京 100084)
Author(s):
 Qianli Huang Yuansheng Liu Qingling Feng
 

(Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China)

关键词:
 珍珠层成骨特性体外体内
DOI:
10.7502/j.issn.1674-3962.2013.10.03
文献标志码:
A
摘要:
 由于骨质疏松、骨折、骨肿瘤等原因导致的骨缺损困扰着世界上成千上万的人。近年来,关于骨缺损修复材料的研究已得到了国内外科研工作者的广泛关注。珍珠层是组成许多软体动物贝壳的结构单元之一。与骨组织类似,珍珠层也是一种由无机相矿物与有机基质组成的复合材料。虽然珍珠层与骨组织具有非同源性,但是,其部分的形成机理可能具有类似性。本文综述了近年来国内外关于珍珠层研究的大量体外与体内实验结果,这些实验结果表明了珍珠层具有良好的生物相容性与成骨特性,有可能成为一种具有潜力的天然骨修复材料。珍珠层的成骨特性很有可能来源于其有机基质中的未知信号因子。同时,本文也提出了珍珠层用作天然骨修复材料在今后研究中的机遇与挑战。
Abstract:
 Bone loss due to osteoporosis, bone fracture, bone tumor and trauma affects hundreds of millions of people all over the world. Materials for the purpose of repairing bone defects have received extensive attention from many researchers at home and abroad in recent years. Nacre, which forms the inner layer of many mollusk shells, is also a composite of inorganic minerals and organic matrix similar to the structure of bone. Although nacre and bone are not homologous, parts of the complex machinery that directs their formation might be. Plenty of evidences of experiments about nacre both in vivo and in vitro in recent years are reviewed in this paper. The results present that nacre with its biocompatibility and osteogenic property might be a potential natural biomaterial for bone regeneration. The osteogenic property of nacre might probably be profited from some unknown signaling molecules within the organic matrix of nacre. Future perspectives and challenges for nacre to be applied as a natural biomaterial for bone regeneration are also proposed in this review.

参考文献/References:

 

[1] VALLET-REGI M, GONZALEZ-CALBET J M. Calcium phosphates as substitution of bone tissues [J]. Prog Solid State Chem, 2004, 32(1-2): 1-31.

[2] LIU Y L, WU G, DE GROOT K. Biomimetic coatings for bone tissue engineering of critical-sized defects [J]. J R Soc Interface, 2010, 7(S631-S47.

[3] HABIBOVIC P, DE GROOT K. Osteoinductive biomaterials - properties and relevance in bone repair [J]. J Tissue Eng Regen Med, 2007, 1(1): 25-32.

[4] LI Y H, LIANG X J, FAN T. Research Development of Biomedical Titanium Alloy [M]//LUO Q. Recent Trends in Materials and Mechanical Engineering Materials, Mechatronics and Automation, Pts 1-3. Stafa-Zurich; Trans Tech Publications Ltd. 2011: 2009-12.

[5] CHAKRABORTY A, KUNDU B, BASU D, et al. In vivo bone response and interfacial properties of titanium-alloy implant with different designs in rabbit model with time [J]. Indian journal of dental research : official publication of Indian Society for Dental Research, 2011, 22(2): 277-84.

[6] VALLET-REGI M. Ceramics for medical applications [J]. J Chem Soc-Dalton Trans, 2001, 2): 97-108.

[7] KON E, MURAGLIA A, CORSI A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones [J]. J Biomed Mater Res, 2000, 49(3): 328-37.

[8] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials [J]. Prog Mater Sci, 2009, 54(8): 1059-100.

[9] JACKSON A P, VINCENT J F V, TURNER R M. COMPARISON OF NACRE WITH OTHER CERAMIC COMPOSITES [J]. J Mater Sci, 1990, 25(7): 3173-8.

[10] ZHANG C, ZHANG R Q. Matrix proteins in the outer shells of molluscs [J]. Mar Biotechnol, 2006, 8(6): 572-86.

[11] WESTBROEK P, MARIN F. A marriage of bone and nacre [J]. Nature, 1998, 392(6679): 861-2.

[12] SILVE C, LOPEZ E, VIDAL B, et al. NACRE INITIATES BIOMINERALIZATION BY HUMAN OSTEOBLASTS MAINTAINED INVITRO [J]. Calcif Tissue Int, 1992, 51(5): 363-9.

[13] ALMEIDA M J, PEREIRA L, MILET C, et al. Comparative effects of nacre water-soluble matrix and dexamethasone on the alkaline phosphatase activity of MRC-5 fibroblasts [J]. J Biomed Mater Res, 2001, 57(2): 306-12.

[14] LAMGHARI M, ALMEIDA M J, BERLAND S, et al. Stimulation of bone marrow cells and bone formation by nacre: In vivo and in vitro studies [J]. Bone, 1999, 25(2): 91S-4S.

[15] ROUSSEAU M, PEREIRA-MOURIES L, ALMEIDA M J, et al. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts [J]. Comp Biochem Physiol B-Biochem Mol Biol, 2003, 135(1): 1-7.

[16] MOURIES L P, ALMEIDA M J, MILET C, et al. Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts [J]. Comp Biochem Physiol B-Biochem Mol Biol, 2002, 132(1): 217-29.

[17] ROUSSEAU M, BOULZAGUET H, BIAGIANTI J, et al. Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells [J]. J Biomed Mater Res Part A, 2008, 85A(2): 487-97.

[18] WANG X Y, LIU S F, XIE L P, et al. Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouse osteoblasts (MC3T3-E1) [J]. Comp Biochem Physiol B-Biochem Mol Biol, 2011, 158(2): 173-80.

[19] WANG X Y, HINSHAW S, LIU S F, et al. Pinctada fucata Mantle Gene 5 (PFMG5) from Pearl Oyster Mantle Inhibits Osteoblast Differentiation [J]. Biosci Biotechnol Biochem, 2011, 75(5): 991-3.

[20] KIM H, LEE K, KO C Y, et al. The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation [J]. Biomaterials, 2012, 33(30): 7489-96.

[21] DUPLAT D, CHABADEL A, GALLET M, et al. The in vitro osteoclastic degradation of nacre [J]. Biomaterials, 2007, 28(12): 2155-62.

[22] BURSTONE M S. HISTOCHEMICAL OBSERVATIONS ON ENZYMATIC PROCESSES IN BONES AND TEETH [J]. AnnNY AcadSci, 1960, 85(1): 431-44.

[23] SUD D, DOUMENC D, LOPEZ E, et al. Role of water-soluble matrix fraction, extracted from the nacre of Pinctada maxima, in the regulation of cell activity in abalone mantle cell culture (Haliotis tuberculata) [J]. Tissue Cell, 2001, 33(2): 154-60.

[24] HUANG W, YANG S Y, SHAO J Z, et al. Signaling and transcriptional regulation in osteoblast commitment and differentiation [J]. Front Biosci, 2007, 12(3068-92.

[25] FRANCESCHI R T, XIAO G Z, JIANG D, et al. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation [J]. Connect Tissue Res, 2003, 44(109-16.

[26] STANDAL T, BORSET M, SUNDAN A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling [J]. Exp Oncol, 2004, 26(3): 179-84.

[27] HAUSCHKA P V, WIANS F H. OSTEOCALCIN-HYDROXYAPATITE INTERACTION IN THE EXTRACELLULAR ORGANIC MATRIX OF BONE [J]. Anat Rec, 1989, 224(2): 180-8.

[28] MIRON R J, ZHANG Y F. Osteoinduction: A Review of Old Concepts with New Standards [J]. J Dent Res, 2012, 91(8): 736-44.

[29] BEDOUET L, RUSCONI F, ROUSSEAU M, et al. Identification of low molecular weight molecules as new components of the nacre organic matrix [J]. Comp Biochem Physiol B-Biochem Mol Biol, 2006, 144(4): 532-43.

[30] LO K W H, ASHE K M, KAN H M, et al. The role of small molecules in musculoskeletal regeneration [J]. Regen Med, 2012, 7(4): 535-49.

[31] SHEN Y T, ZHU J, ZHANG H B, et al. In vitro osteogenetic activity of pearl [J]. Biomaterials, 2006, 27(2): 281-7.

[32] NI M, RATNER B D. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution [J]. Biomaterials, 2003, 24(23): 4323-31.

[33] KOKUBO T, KUSHITANI H, SAKKA S, et al. SOLUTIONS ABLE TO REPRODUCE INVIVO SURFACE-STRUCTURE CHANGES IN BIOACTIVE GLASS-CERAMIC A-W3 [J]. J Biomed Mater Res, 1990, 24(6): 721-34.

[34] ZHANG R Y, MA P X. Poly(alpha-hydroxyl acids) hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology [J]. J Biomed Mater Res, 1999, 44(4): 446-55.

[35] ALBREKTSSON T, JOHANSSON C. Osteoinduction, osteoconduction and osseointegration [J]. Eur Spine J, 2001, 10(S96-S101.

[36] FROST H M. TETRACYCLINE-BASED HISTOLOGICAL ANALYSIS OF BONE REMODELING [J]. Calcified Tissue Research, 1969, 3(3): 211-&.

[37] BEDOUET L, DUPLAT D, MARIE A, et al. Heterogeneity of proteinase inhibitors in the water-soluble organic matrix from the oyster nacre [J]. Mar Biotechnol, 2007, 9(4): 437-49.

[38] DUPLAT D, GALLET M, BERLAND S, et al. The effect of molecules in mother-of-pearl on the decrease in bone resorption through the inhibition of osteoclast cathepsin K [J]. Biomaterials, 2007, 28(32): 4769-78.

[39] WILLIAMS D. Revisiting the definition of biocompatibility [J]. Medical device technology, 2003, 14(8): 10-3.

[40] ATLAN G, BALMAIN N, BERLAND S, et al. Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration [J]. Comptes Rendus Acad Sci Ser III-Sci Vie-Life Sci, 1997, 320(3): 253-8.

[41] LAMGHARI M, BERLAND S, LAURENT A, et al. Bone reactions to nacre injected percutaneously into the vertebrae of sheep [J]. Biomaterials, 2001, 22(6): 555-62.

[42] LAMGHARI M, ANTONIETTI P, BERLAND S, et al. Arthrodesis of lumbar spine transverse processes using nacre in rabbit [J]. J Bone Miner Res, 2001, 16(12): 2232-7.

[43] ATLAN G, DELATTRE O, BERLAND S, et al. Interface between bone and nacre implants in sheep [J]. Biomaterials, 1999, 20(11): 1017-22.

[44] KIM Y W, KIM J J, KIM Y H, et al. Effects of organic matrix proteins on the interfacial structure at the bone-biocompatible nacre interface in vitro [J]. Biomaterials, 2002, 23(9): 2089-96.

[45] BERLAND S, DELATTRE O, BORZEIX S, et al. Nacre/bone interface changes in durable nacre endosseous implants in sheep [J]. Biomaterials, 2005, 26(15): 2767-73.

[46] ROUSSEAU M, DELATTRE O, GILLET P, et al. Subchondral nacre implant in the articular zone of the sheep’s knee: A pilot study [J]. Bio-Med Mater Eng, 2012, 22(4): 227-34.

[47] LEE K, KIM H, KIM J M, et al. Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function [J]. Mol Biol Rep, 2012, 39(3): 3211-8.

[48] DAI J P, CHEN J, BEI Y F, et al. Effects of pearl powder extract and its fractions on fibroblast function relevant to wound repair [J]. Pharm Biol, 2010, 48(2): 122-7.

[49] LOPEZ E, LE FAOU A, BORZEIX S, et al. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl) [J]. Tissue Cell, 2000, 32(1): 95-101.

[50] SHONO M, SHIMIZU I, AOYAGI E, et al. Reducing Effect of Feeding Powdered Nacre of Pinctada maxima on the Visceral Fat of Rats [J]. Biosci Biotechnol Biochem, 2008, 72(10): 2761-3.

[51] LIU Y C, SATOH K, HAS Y. Feeding scallop shell powder induces the expression of uncoupling protein 1 (UCP1) in white adipose tissue of rats [J]. Biosci Biotechnol Biochem, 2006, 70(11): 2733-8.

[52] LIU Y C, HASEGAWA Y. Reducing effect of feeding powdered scallop shell on the body fat mass of rats [J]. Biosci Biotechnol Biochem, 2006, 70(1): 86-92.

[53] VUJASINOVIC-STUPAR N, NOVKOVIC S, JEZDIC I. Supplementation with Bio-Calcium from Shells Pinctada Maxima in Postmenopausal Women with Decreased Mineral Bone Density - Pilot Study [J]. Srp Ark Celok Lek, 2009, 137(9-10): 518-23.

[54] MA P X, ZHANG R Y, XIAO G Z, et al. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds [J]. J Biomed Mater Res, 2001, 54(2): 284-93.

[55] SEITZ H, RIEDER W, IRSEN S, et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering [J]. J Biomed Mater Res Part B, 2005, 74B(2): 782-8.

[56] ZHU L Q, WANG H M, XU J H, et al. Effects of nacre-coated titanium surfaces on cell proliferation and osteocalcin expression in MG-63 osteoblast-like cells [J]. Afr J Biotechnol, 2011, 10(68): 15387-93.

[57] SCHLIEPHAKE H. Application of bone growth factors--the potential of different carrier systems [J]. Oral and maxillofacial surgery, 2010, 14(1): 17-22.

[58] GOMBOTZ W R, WEE S F. Protein release from alginate matrices [J]. Adv Drug Deliv Rev, 1998, 31(3): 267-85.

[59] AUGST A D, KONG H J, MOONEY D J. Alginate hydrogels as biomaterials [J]. Macromol Biosci, 2006, 6(8): 623-33.

[60] LUO Y, KIRKER K R, PRESTWICH G D. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery [J]. J Control Release, 2000, 69(1): 169-84.

[61] PRESTWICH G D, MARECAK D M, MARECEK J F, et al. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives [J]. J Control Release, 1998, 53(1-3): 93-103.

[62] MINGEN X, YANLEI L, HAIRUI S, et al. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering [J]. Biofabrication, 2010, 2(2): 025002 (10 pp.)- (10 pp.) (10 pp.).

[63] ZHU L Q, WANG H M, XU J H, et al. Effects of titanium implant surface coated with natural nacre on MC3T3E1 cell line in vitro [J]. Prog Biochem Biophys, 2008, 35(6): 671-5.

备注/Memo

备注/Memo:
 

基金项目:国家自然科学基金(51072090)

作者简介:黄千里(1990—),男,在读博士生。主要研究方向:生物医用材料。

通信联系人:冯庆玲,女,教授,博士生导师, E-mail: biomater@mail.tsinghua.edu.cn

更新日期/Last Update: 2013-10-11