[1]雷波,马晓龙 *.仿生纳米纤维支架促进骨组织再生[J].中国材料进展,2013,(10):033-45.[doi:10.7502/j.issn.1674-3962.2013.10.02]
点击复制

仿生纳米纤维支架促进骨组织再生()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第10期
页码:
033-45
栏目:
特约研究论文
出版日期:
2013-10-31

文章信息/Info

文章编号:
1674?962 (2013)10-
作者:
雷波1马晓龙12 *
(1西安交通大学,前沿科学技术研究院,中国 陕西 西安 710054)
关键词:
骨组织工程纳米纤维支架仿生材料骨组织再生
分类号:
TG 146.4
DOI:
10.7502/j.issn.1674-3962.2013.10.02
文献标志码:
A
摘要:
人口老龄化,疾病以及交通事故等造成大量的人体骨组织损伤和丢失。如何实现骨组织缺损的快速修复与再生成为临床医学研究的重要课题和目标,而生物医用材料在其中发挥着极其重要的作用。目前临床上常用的骨组织修复材料如自体骨、异体骨、合成材料(金属,陶瓷,高分子)等都存在各种各样的问题,无法实现大规模的应用和骨组织的快速有效再生。而骨组织工程学科研究多孔支架结合细胞和生长因子来实现骨组织再生,以解决骨科临床面临的问题为目的。最近十多年来,三维纳米纤维支架由于可以仿天然细胞外基质的结构和形态而显示出较强的促进细胞增殖、成骨分化以及骨组织修复再生的能力。本文主要综述具有仿生的纳米纤维及其复合支架材料的制备技术以及他们在增强细胞功能、干细胞成骨分化、及其骨组织再生中的应用。
Abstract:
Population aging, bone diseases and accidents result in a large number of patients with serious bone loss and defects. The efficient bone tissue repair and regeneration have been important topics in clinical medicine. Here, biomedical materials play an important role in bone regeneration. However, current clinical bone-repair biomaterials such as autografts, allografts and synthetic materials (metals, ceramics and polymers) suffer from various shortcomings, having limited applications in bone repair. In bone tissue engineering research, biodegradable scaffolds along with cells and growth factors have shown high potential in facilitating bone regeneration as a potential new therapy for bone loss in the clinic. In the past decade, due to their structure and morphology that mimic the native extracellular matrix, nanofibrous scaffolds have been shown to be capable of facilitating cell proliferation、osteogenic differentiation of stem cells, and bone regeneration in vivo compared to control scaffolds. In this paper, we will review the fabrication technologies of biomimetic nanofibrous scaffolds and their applications in enhancing cellular function, osteogenic differentiation, and bone tissue regeneration.

参考文献/References:

References
[1] Gruskin E, Doll BA, Futrell FW, et al. Demineralized bone matrix in bone repair: History and use [J]. Advanced Drug Delivery Reviews, 2012,64(12):1063-1077.
[2] Geetha M, Singh A, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants朼 review [J]. Progress in Materials Science, 2009,54(3):397-425.
[3] Bohner M. Resorbable biomaterials as bone graft substitutes [J]. Materials Today, 2010,13(1?):24-30.
[4] Zandonella C. Tissue engineering: The beat goes on [J]. Nature, 2003,421(6926):884-886.
[5] Hubbell JA. Biomaterials in tissue engineering [J]. Nature Biotechnology, 1995,13(6):565-576.
[6] Boden SD. Bioactive factors for bone tissue engineering [J]. Clinical Orthopaedics and Related Research, 1999, 367(S84-S94).
[7] Bianco P, Robey PG. Stem cells in tissue engineering [J]. Nature, 2001,414(6859):118-121.
[8] Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering [J]. Nature Medicine, 1995,1(12):1322-1324.
[9] Lutolf M, Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering [J]. Nature biotechnology, 2005, 23(1):47-55.
[10] Hollister SJ. Porous scaffold design for tissue engineering [J]. Nature materials, 2005,4(7):518-524.
[11] Lutolf MP, Weber FE, Schmoekel HG, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices [J]. Nature biotechnology, 2003,21(5):513-518.
[12] Gentleman E, Swain RJ, Evans ND, et al. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation [J]. Nature materials, 2009,8(9):763-770.
[13] Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering [J]. Biomaterials, 2011,32(36):9622-9629.
[14] Jang J-H, Castano O, Kim H-W. Electrospun materials as potential platforms for bone tissue engineering [J]. Advanced drug delivery reviews,2009,61(12):1065-1083.
[15] Ma PX. Biomimetic materials for tissue engineering [J]. Advanced drug delivery reviews, 2008,60(2):184-198.
[16] Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering [J]. Journal of Materials Chemistry, 2011,21(28):10243-10251.
[17] Zhong S, Zhang Y, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: A review [J]. Tissue Engineering Part B: Reviews, 2011, 18(2):77-87.
[18] Blakeney BA, Tambralli A, Anderson JM, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold [J]. Biomaterials, 2011,32(6):1583-1590.
[19] Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering [J]. Journal of biomedical materials research, 2002,60(4):613-621.
[20] Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering [J]. Biomaterials, 2005,26(15):2603-2610.
[21] Park KE, Kang HK, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of PGA/ chitin blend nanofibers [J]. Biomacromolecules, 2006,7(2):635-643.
[22] Li W-J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold [J]. Biomaterials, 2005,26(25):5158-5166.
[23] Shih YRV, Chen CN, Tsai SW, et al. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers [J]. Stem Cells, 2006,24(11):2391-2397.
[24] Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering [J]. Biomaterials, 2005,26(30):5999-6008.
[25] Yang D, Jin Y, Zhou Y, et al. In situ mineralization of hydroxyapatite on electrospun chitosan‐based nanofibrous scaffolds [J]. Macromolecular bioscience, 2008,8(3):239-246.
[26] Bhattarai N, Li Z, Edmondson D, et al. Alginate‐based nanofibrous scaffolds: Structural, mechanical, and biological properties [J]. Advanced Materials, 2006, 18(11):1463-1467.
[27] Li C, Vepari C, Jin H-J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering [J]. Biomaterials, 2006,27(16):3115-3124.
[28] Li M, Mondrinos MJ, Chen X, et al. Co‐electrospun poly (lactide‐co‐glycolide), gelatin, and elastin blends for tissue engineering scaffolds [J]. Journal of Biomedical Materials Research Part A, 2006,79(4):963-973.
[29] Jose MV, Thomas V, Dean DR, et al. Fabrication and characterization of aligned nanofibrous PLGA/collagen blends as bone tissue scaffolds [J]. Polymer, 2009, 50(15):3778-3785.
[30] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly (?-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J]. Biomaterials, 2008,29(34):4532-4539.
[31] Malheiro VN, Caridade SG, Alves NM, et al. New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications [J]. Acta Biomaterialia, 2010,6(2):418-428.
[32] Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite /chitosan for bone tissue engineering [J]. Biomaterials, 2008,29(32):4314-4322.
[33] Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/ calcium carbonate composite nano-fibers [J]. Biomaterials, 2005,26(19):4139-4147.
[34] Pirzada T, Arvidson SA, Saquing CD, et al. Hybrid silica–pva nanofibers via sol–gel electrospinning [J]. Langmuir, 2012,28(13):5834-5844.
[35] Schofer MD, Roessler PP, Schaefer J, et al. Electrospun plla nanofiber scaffolds and their use in combination with bmp-2 for reconstruction of bone defects [J]. PLoS One, 2011,6(9): 25462.
[36] Woo KM, Chen VJ, Jung H-M, et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects [J]. Tissue Engineering Part A, 2009,15(8):2155-2162.
[37] Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications [J]. Advanced drug delivery reviews,2007,59(14):1392-1412.
[38] Zhang R and Ma PX. Poly((-hydroxyl acids)/hydroxyapatite porous composites for bone tissue engineering: 1. Preparation and morphology. Journal of Biomedical Materials Research, 1999, 44(4):446-455.
[39] Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation [J]. Journal of biomedical materials research, 1999,47(1):8-17.
[40] Smith L, Ma P. Nano-fibrous scaffolds for tissue engineering [J]. Colloids and surfaces B: biointerfaces, 2004,39(3):125-131.
[41] Ma PX. Scaffolds for tissue fabrication [J]. Materials today, 2004,7(5):30-40.
[42] Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds [J]. Soft Matter, 2008, 4(11):2144-2149.
[43] Ma PX, Choi J-W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network [J]. Tissue Engineering, 2001,7(1):23-33.
[44] Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds [J]. Biomaterials, 2009,30(25):4094.
[45] Liu X, Ma PX. The nanofibrous architecture of poly (l-lactic acid)-based functional copolymers [J]. Biomaterials, 2010,31(2):259-269.
[46] Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair [J]. Nature materials, 2011,10(5):398-406.
[47] Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres [J]. Journal of Biomedical Materials Research Part A, 2006, 78(2):306-315.
[48] Lei B, Shin K-H, Noh D-Y, et al. Nanofibrous gelatin–silica hybrid scaffolds mimicking the native extracellular matrix (ecm) using thermally induced phase separation [J]. Journal of Materials Chemistry, 2012,22(28):14133-14140.
[49] Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering [J]. Biomaterials, 2009,30(12):2252-2258.
[50] He C, Xiao G, Jin X, et al. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography [J]. Advanced functional materials, 2010,20 (20): 3568-3576.
[51] He C, Zhang F, Cao L, et al. Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering [J]. Journal of Materials Chemistry, 2012,22(5):2111-2119.
[52] Yoshimoto H, Shin Y, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering [J]. Biomaterials, 2003,24(12):2077-2082.
[53] Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment [J]. Journal of Biomedical Materials Research Part A, 2003, 67(2):531-537.
[54] Binulal N, Deepthy M, Selvamurugan N, et al. Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators [J]. Tissue Engineering Part A, 2010, 16(2) :393-404.
[55] Wang J, Ma H, Jin X, et al. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells [J]. Biomaterials, 2011,32(31):7822-7830.
[56] Seong JM, Kim B-C, Park J-H, et al. Stem cells in bone tissue engineering [J]. Biomedical Materials, 2010, 5(6):062001.
[57] Hu J, Feng K, Liu X, et al. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network [J]. Biomaterials, 2009, 30(28):5061-5067.
[58] Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold [J]. Biomaterials, 2007, 28(2) :316-325.
[59] Smith LA, Liu X, Hu J, et al. The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells [J]. Biomaterials, 2009,30(13):2516-2522.
[60] Kao C-L, Tai L-K, Chiou S-H, et al. Resveratrol promotes osteogenic differentiation and protects against dexamethasone damage in murine induced pluripotent stem cells [J]. Stem cells and development, 2010, 19(2):247-258.
[61] Wei G, Jin Q, Giannobile WV, et al. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres [J]. Biomaterials, 2007, 28(12) :2087-2096.
[62] Cai YZ, Wang LL, Cai HX, et al. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone [J]. Journal of Biomedical Materials Research Part A, 2010,95(1):49-57.
[63] Woo KM, Chen VJ, Jung H-M, et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects [J]. Tissue Engineering Part A, 2009,15(8):2155-2162.
[64] Liu H, Peng H, Wu Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-bmp/smad signaling pathway in bmscs [J]. Biomaterials, 2013, 34 (18) :4404-4417.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(59493300);教育部博士点基金资助项目(9800462
收稿日期: 2000-03-11;修订日期:2000-03-06
更新日期/Last Update: 2013-10-11