[1]袁新生,顾士甲,王连军,等.热处理温度及EDTA对β-NaYF4:Yb3+,Er3+材料结构与性能的影响[J].中国材料进展,2014,(2):120-124.[doi:10.7502/j.issn.1674-3962.2014.02.08]
 YUAN Xinsheng,GU Shijia,WANG Lianjun,et al.The Effect of Heat Treatment Temperature and EDTA on Structure and Performance of β-NaYF4: Yb3+, Er3+[J].MATERIALS CHINA,2014,(2):120-124.[doi:10.7502/j.issn.1674-3962.2014.02.08]
点击复制

热处理温度及EDTA对β-NaYF4:Yb3+,Er3+材料结构与性能的影响()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第2期
页码:
120-124
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
The Effect of Heat Treatment Temperature and EDTA on Structure and Performance of β-NaYF4: Yb3+, Er3+
文章编号:
1674-3962(2014)02-0120-05
作者:
袁新生顾士甲王连军江莞
东华大学纤维改性国家重点实验室, 上海 201620
Author(s):
YUAN Xinsheng GU Shijia WANG Lianjun JIANG Wan

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,

Donghua University, Shanghai 201620, China
关键词:
 NaYF4: Yb3+ Er3+热处理螯合剂上转换发光
分类号:
TB34\TQ124.3
DOI:
10.7502/j.issn.1674-3962.2014.02.08
文献标志码:
A
摘要:
采用共沉淀法合成了Yb3+、Er3+共掺杂的NaYF4粉体,重点研究了热处理温度和螯合剂EDTA对所合成粉体的晶相、表面形貌以及上转换发光性能的影响,并利用X射线衍射、扫描电镜及荧光光谱对其结构组成、晶体表面形貌及发光性能进行了研究。结果表明:随着热处理温度的升高,NaYF4:Yb3+,Er3+粉体由立方相向六方相转变,当温度高于600 ℃时又从六方相逐渐转变为立方相,而且颗粒的尺寸逐渐变大,从近似球形到无规则形状;NaYF4:Yb3+,Er3+发光强度与热处理温度密切相关,热处理温度对于β-NaYF4:Yb3+,Er3+的发光性能有着重要的影响。经过600 ℃热处理后的粉体具有较高的发光强度;螯合剂EDTA的添加对所合成粉体的发光性能有着明显的影响,螯合剂的添加降低了其发光强度;在1 000 ℃以内,NaYF4:Yb3+,Er3+具有良好的热稳定性。
Abstract:
Ytterbium (Yb3+) and erbium (Er3+) ions codoped sodium yttrium fluoride was prepared by precipitation method in the presence of EDTA as a chelating agent. The research is mainly focused on the effect of EDTA and calcination temperature on the powder crystal phase, surface morphology and the luminous performance. The phase composition, microstructure and property of luminescence are characterized by XRD, SEM and fluorescence spectrophotometer. The experimental results showed that with the increase of heat treatment, phase transition from cubic to hexagonal of NaYF4:Yb3+, Er3+ powder occurred. When the temperature reached higher than 600 ℃, the hexagonal phase gradually transformed to cubic phase, and the size of the particles increased gradually, from approximately spherical to random shape; The luminous intensity of NaYF4: Yb3+, Er3+ is closely related to heat treatment temperature, which has an important effect on the luminous properties. NaYF4:Yb3+,Er3+ heated at 600 ℃ shows the relative strongest upconversion(UC) luminous intensity; The powder synthesized with EDTA shows evident effect on the intensity of UC emission, and makes UC luminous intensity weaker; NaYF4:Yb3+,Er3+ has a good thermal stability below 1 000 ℃.

参考文献/References:

[1] Yao C Z, Tong Y X. Lanthanide Ion-Based Luminescent Nanomaterials for Bioimaging [J]. Trends in Analytical Chemistry, 2012, 39: 60-71.

[2] Wang F, Liu X G. Recent Advances in The Chemistry of Lanthanide-doped Upconversion Nanocrystals [J]. Chemical Society Reviews, 2009, 38(4): 976-989.

[3] Krämer K W, Biner G, Frei H U, et al. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors [J]. Chemistry of Materials, 2004, 16(7): 1244-1251.

[4] Mishra S, Ledoux G, Jeanneau E, et al. Novel Heterometal-organic Complexes as First Single Source Precursors for Up-converting NaY(Ln)F4 (Ln = Yb, Er, Tm) Nanomaterials [J]. Dalton Transactions, 2012, 41:1490-1502.

[5] Kim S and Bawendi M G. Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots [J]. Journal of American Chemical Society, 2003, 125(48): 14652-14653.

[6] Bednarkiewicz A, Wawrzynczyk D, Gagor A, et al. Giant Enhancement of Upconversion in Ultra-small Er3+/Yb3+:NaYF4 Nanoparticls via Laser Annealing [J]. Nanotechnology, 2012, 23(14): 145705.

[7] Scheife H, Huber G, Heumann E. Advances in Upconversion Lasers Based on Er3+ and Pr3+ [J]. Optical Materials, 2004, 26(4): 365-374.

[8] Sun Jiayue (孙家跃), Yang Zhiping (杨志萍), Du Haiyan (杜海燕). 共沉淀法制备NaYF4:Tm3+, Yb3+ 的上转换发光 [J]. Chinese Journal of Luminescence (发光学报), 2009, 30(2): 195-200.

[9] Zeng J H, Su J, Li Z H, et al. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+,Er3+ Phosphors of Controlled Size and Morphology [J]. Advanced Materials, 2005, 17(17): 2119-2123.

[10] Boyer J C, Cuccia L A, Capobianco J A. Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals [J]. Nano Letters, 2007, 7(3): 847-852.

[11] Yi G S, Lu H C, Zhao S Y, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors [J]. Nano Letters, 2004, 4(11): 2191-2196.

[12] Li Liping (李丽平), Gao Wei (高玮), Chen Xuemei (陈雪梅), et al. NaYF4:Yb,Er 材料的制备及其上转换发光性能 [J]. Rare Earth(稀土), 2012, 33(2): 35-39.

[13] Qin G S, Qin W P, Wu C F, et al. Enhancement of Ultraviolet Upconversion in Yb3+ and Tm3+ Codoped Amorphous Fluoride Prepared by Pulsed Laser Deposition [J]. Journal of Applied Physics, 2003, 93(7):4328-4330.

[14] Sontakke A D , Annapurna K. Energy Transfer Kinetics in Oxy-fluoride Glass and Glass-ceramics Doped with Rare-earth Ions [J]. Journal of Applied Physics, 2012, 112:0135101-0135109.

[15] Wang L, Li Y D. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals[J]. Chemical Materials, 2007, 19(4):727-734.

[16] Yi G S,Chow G M. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence [J]. Chemistry of Materials, 2007, 19(3): 341-343.

更新日期/Last Update: 2014-02-26