[1]王震宇,韩恩厚,刘福春,等.纳米复合海洋涂料在船舶防腐蚀应用研究[J].中国材料进展,2014,(1):014-19.[doi:10.7502/j.issn.1674-3962.2014.01.03]
 Zhenyu Wang,Enhou Han,Fuchun Liu,et al.Application Research of Marine Composite Nano-coatings in Corrosion Protection of Ship[J].MATERIALS CHINA,2014,(1):014-19.[doi:10.7502/j.issn.1674-3962.2014.01.03]
点击复制

纳米复合海洋涂料在船舶防腐蚀应用研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第1期
页码:
014-19
栏目:
特约研究论文
出版日期:
2014-01-31

文章信息/Info

Title:
Application Research of Marine Composite Nano-coatings in Corrosion Protection of Ship
作者:
王震宇1韩恩厚1刘福春1史洪威1邱再明2郝庆辉2
(1.中国科学院金属研究所 国家金属腐蚀控制工程技术研究中心 沈阳 110016)(2.大连裕祥科技集团有限公司 大连 116033
Author(s):
Zhenyu Wang1' target="_blank" rel="external"> serif">Zhenyu Wang1 Enhou Han1 Fuchun Liu1 Hongwei Shi1Zaiming Qiu2' target="_blank" rel="external"> serif">Zaiming Qiu2 Qinghui Hao2
(1.National Engineering Research Center for corrosion control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016) (2. Dalian Yuxiang Science & Technology Corporation, Dalian, 116088)
关键词:
纳米复合海洋涂料纳米氧化物浓缩浆海洋腐蚀环境抗老化
分类号:
TG174.46
DOI:
10.7502/j.issn.1674-3962.2014.01.03
文献标志码:
A
摘要:
本文主要研究纳米二氧化硅浓缩浆和纳米氧化锌浓缩浆对海洋环氧涂料和聚氨酯涂料性能的影响。通过盐雾试验、氙灯老化试验、人工海洋加速老化试验研究海洋腐蚀环境中纳米复合涂料的耐腐蚀性和抗老化性。通过三步法制备高稳定分散的纳米氧化物浓缩浆,并利用纳米二氧化硅浓缩浆和纳米氧化锌浓缩浆改性海洋船舶环氧底漆和聚氨漆酯船壳漆,制备海洋纳米复合涂料。利用TEM透射电镜、FTIR红外光谱、XPS光电子能谱、光泽度仪、表面接触角测试仪和粘结强度测试仪等研究海洋船舶漆的耐腐蚀性、抗老化性及表面防污性能。纳米二氧化硅浓缩浆的红外光谱分析和粘度测试及纳米氧化锌浓缩浆的透射电镜观察表明高分子分散剂的长碳链位阻效应保证了纳米粒子的均匀稳定分散。不含有纳米二氧化硅浓缩浆的环氧漆粘结强度是4.4 MPa,而含有1.0%纳米二氧化硅浓缩浆的环氧漆粘结强度增加到5.6 MPa。通过氙灯老化试验测试涂层的光泽度变化,纳米聚氨漆酯漆的光泽度高于不含纳米氧化锌的普通聚氨漆酯漆光泽度。聚氨漆酯漆在海洋循环加速老化试验后C/O值减少20.1%,而含有1.2 %纳米氧化锌浓缩浆的纳米复合聚氨漆酯漆老化后C/O值仅减少10.7%,抗氧化性提高。通过对海洋加速循环老化试验中纳米聚氨漆酯漆的测试分析表明1.2%纳米氧化锌浓缩浆提高了海洋船舶聚氨酯面漆的抗老化性和表面接触角。纳米浓缩浆增强纳米复合涂料在海洋重腐蚀环境中耐腐蚀、抗老化等性能。
Abstract:
The aim of this paper is to investigate the effect of SiO2 nano-concentrate and ZnO nano-concentrate on properties of epoxy and polyurethane marine coating. The corrosion-inhibiting and anti-aging properties of composite nano-coatings used in marine environment were investigated by the salt spray test, xenon lamp aging test, ocean accelerated cycle aging test. The stable well-dispersed nano-concentrates were prepared by three-step method, and epoxy and polyurethane marine nano-coatings were modified by SiO2 nano-concentrate and ZnO nano-concentrate. The work has investigated corrosion resistance, weathering resistance and antifouling property of marine nano-coating by use of transmission electron microscopy (TEM), fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), gloss meter and measuring instrument of surface contact angle. The FTIR analysis and viscosity measurement of SiO2 nano-concentrates and TEM observation of ZnO nano-concentrates demonstrate that the well-dispersed state of nanoparticles can be attributed to the strong steric effect of long carbon chains of polymer dispersing agent. The bonding strength of epoxy nano-coating with 1.0% SiO2 nano-concentrate increases from 4.4 MPa of epoxy coating without nano-concentrate to 5.6 MPa. The analytic results of salt spray test demonstrate that 1.0% SiO2 nano-concentrates improve the resistance of epoxy nano-coating to salt spray. The gloss measurement in the xenon lamp aging test demonstrates that gloss of polyurethane nano-coating is higher than that of polyurethane coating without nanoparticles. The C/O ratio of polyurethane coat ing without nano-concentrate after accelerated cycle aging test dramatically decreases 20.1% while the C/O ratio of polyurethane nano-coating with 1.2 % ZnO nano-concentrate after aging test only decreases 10.7%.The measurements of gloss and surface contact angle during ocean accelerated cycle aging test indicate that 1.2% ZnO nano-concentrations greatly enhance the anti-aging and surface contact angle of polyurethane coating. In conclusion, the nano-concentrates can improve corrosion resistance and weathering resistance of nano-coatings in marine heavy corrosion environment.

参考文献/References:

References
[1] Schmidt D P, Shaw B A, Sikora E, et al. Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment, Progress in Organic Coatings, 2006, 57(4): 352-364.
[2] 夏兰廷(Xia Lanting). Marine Corrosion and Protection of Meatal Materials(金属材料的海洋腐蚀与防护)[M]. Beijing: Metallurgical Industry Press, 2003.
[3] Heyer A, D’Souza F, Leon Morales C F, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view, Ocean Engineering, 2013, 70: 188-200.
[4] Liu Fuchun (刘福春). Titanium dioxide nano-composite and its preparation method (一种纳米二氧化钛浆组合物及其制备方法): China, 01128206.1[P]. 2003-04-16.
[5] Liu Fuchun (刘福春). Zinc oxide nano-composite and its preparation method (一种纳米氧化锌浆料组合物及其制备方法): China, 01128271.1[P]. 2003-04-23.
[6] Liu Fuchun (刘福春). Polyurethane nano-coating for ship and its preparation method (船用纳米改性聚氨酯涂料及其制备方法): China, 02132731.9[P]. 2003-10-29.
[7]Zhenyu Wang (王震宇), Enhou Han (韩恩厚). A composite nano-coating with low surface treatment and its preparation method (一种低表面处理纳米复合防腐涂料及其制备方法): China, 200810010985.0 [P]. 2011-02-02.
[8] Liu F C, Han E H, Ke W. Fabrication and characteristics of a nano-TiO2 concentrated dispersion. Journal of Dispersion Science Technology, 2010, 31(5): 611-616.
[9] Yu S L, Zuo X T, Bao R L, et al Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane, Polymer, 2009, 50(2): 553-559.
[10] Rudolph M, Erler J, Peuker U A, A TGA–FTIR perspective of fatty acid adsorbed on magnetite nanoparticles–Decomposition steps and magnetite reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 397: 16-23
[11] May M, Wang H M, Akid R, Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol–gel epoxy system, International Journal of Adhesion and Adhesives, 2010, 30(6): 505-512.
[12] Wang Z Y, HAN E H, Liu F C, KE W, Fire and corrosion resistances of intumescent nano-coating containing nano-SiO2 in salt spray condition, Journal
of Materials Sciences & Technology, 2010, 26?(1):?75-81.
[13] Tang E, Fu C Y, Wang S, et al Graft polymerization of styrene monomer initiated by azobis(4-cyanovaleric acid) anchored on the surface of ZnO nanoparticles and its PVC composite film, Powder Technology, 2012, 218: 5-10.
[14] Wang Z Y, HAN E H, Liu F C, KE W, Ageing resistance and corrosion resistance of silicone-epoxy and polyurethane topcoats used in sea splash zone, Material Corrosion, 2012, 63: 1-8.
[15] Vilani C, Weibel D E, Zamora R R M, et al Study of the influence of the acrylic acid plasma parameters on silicon and polyurethane substrates using XPS and AFM, Applied Surface Science, 2007, 254(1): 131-134.
[16] Pegoretti A, Dorigato A, Brugnara M, Contact angle measurements as a tool to investigate the filler–matrix interactions in polyurethane–clay nanocomposites from blocked prepolymer, European Polymer Journal, 2008, 44(6): 1662-1672.

备注/Memo

备注/Memo:
基金项目:国家科技支撑计划课题:船舶与大型海洋工程防护涂料及关键技术研发(2009BAE70B03,2009BAE70B01)通讯作者:王震宇,男,1972,博士,副研究员,Email:zzyywang@imr.ac.cn4
更新日期/Last Update: 2014-01-02