[1]裴为华*,国冬梅,耿照新,等.印刷传感技术[J].中国材料进展,2014,(3):049-55.[doi:10.7502/j.issn.1674-3962.2014.03.07]
 Pei Weihua*,Guo Dongmei,Geng Zhaoxin,et al.Printed Sensor Technology[J].MATERIALS CHINA,2014,(3):049-55.[doi:10.7502/j.issn.1674-3962.2014.03.07]
点击复制

印刷传感技术()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第3期
页码:
049-55
栏目:
特约研究论文
出版日期:
2014-03-30

文章信息/Info

Title:
Printed Sensor Technology
作者:
裴为华1*国冬梅123耿照新1陈弘达1
1、中国科学院半导体研究所集成光电子学国家重点联合实验室 * 2、石家庄铁道大学电气与电子工程学院;3、石家庄信息工程职业学院印刷技术系
Author(s):
Pei Weihua1*Guo Dongmei123Geng Zhaoxin1Chen Hongda1

1、State Key Laboratory on Integrated Optoelectronics, the Institute of Semiconductors, Chinese Academy of Sciences; *

2、Electrical and Electronics Engineering,Shijiazhuang Tiedao University;

3、Department of Printing,Shijiazhuang Information Engineering Vocational College;

关键词:
印刷电子敏感元件传感器灵敏度印刷传感
DOI:
10.7502/j.issn.1674-3962.2014.03.07
文献标志码:
A
摘要:
和硅基电子器件与印制电路板(PCB)相比,印刷电子独特的制备工艺使得导线、有机或无机半导体、介质材料能够以更灵活的方式与衬底材料结合在一起,特别是一些在力、热、光、电等方面有着特殊性质的材料。因此对于大多数旨在将非电信号转换为电信号的传感器而言,印刷电子技术为这类传感器的制备提供了良好的工艺手段。另一方面,印刷电子环保、大批量、低成本的制备方法也为快速增长的传感器需求提供了良好的解决方案。目前随着印刷电子技术在材料、制备工艺和配套设备方面的不断发展,采用印刷方式制备的传感器的方法和类型不断推陈出新,成为印刷电子一个重要的发展方向。本文将对目前采用印刷电子技术制备或适合印刷制备的一些传感器,特别是用于生物信号传感和分析一些传感器的材料、功能特点及制备方法进行综述。旨在介绍印刷电子技术或者印刷制备方法在传感器研究和制备方面所存在的巨大潜力和良好的应用前景。
Abstract:
Compared with silicon-based electronics and printed circuit board (PCB), printed electronics can combined conductive material, semiconductor, dielectric materials, as well as materials with special properties in mechanical, thermal and optical with substrate material in a more flexible method. For the sensors designed to convert non-electrical signals to electrical signals, printed electronics provides a good method to fabricate this kind of sensors. On the other hand, printed electronics, as an environmental friendly, low cost, as well as mass productive fabrication methods, play a prospective role in the rapidly growth market demands of sensors in the future. Now with the progress in printable materials, fabrication process and equipment, sensors fabricated by printed electronics are sustaining innovation, printed sensors technology has become an important development direction.This paper will recommend some sensors currently used in printed electronic technology preparation or suitable for printing preparation, especially review some sensor materials, functional characteristics and preparation methods for biological signal sensing and analysis. Aims to introduce the printed electronics or printing preparation method have a great potential and good application prospect in sensor research and preparation.

参考文献/References:

Strakosas X, Sessolo M, Hama A, et al. A facile biofunctionalisation route for solution processable conducting polymer devices[J]. Journal of Materials Chemistry B, 2014.

Stavrinidou E, Leleux P, Rajaona H, et al. A simple model for ion injection and transport in conducting polymers[J]. Journal of Applied Physics, 2013, 113(24): 244501.

Leleux P, Badier J M, Rivnay J, et al. Conducting Polymer Electrodes for Electroencephalography[J]. Advancedhealthcare materials, 2013.

Stavrinidou E, Leleux P, Rajaona H, et al. Direct Measurement of Ion Mobility in a Conducting Polymer[J]. Advanced Materials, 2013, 25,4488-4493.

Khodagholy D, Rivnay J, Sessolo M, et al. High transconductance organic electrochemical transistors[J]. Nature communications, 2013, 4.

Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors[J]. Nature communications, 2013, 4: 1575.

Spanu A, Lai S, Cosseddu P, et al. Organic FET device as a novel sensor for cell bioelectrical and metabolic activity recordings[C]//Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on. IEEE, 2013: 937-940.

Kim S H, Hong K, Xie W, et al. Electrolyte‐Gated Transistors for Organic and Printed Electronics[J]. Advanced Materials,

2012, 25: 1842-1846.

Bongo M, Winther-Jensen O, Himmelberger S, et al. PEDOT: Gelatin composites mediate brain endothelial cell adhesion[J]. J. Mater. Chem. B, 2013, 1: 3860-3867.

Sun B, Tehrani P, Robinson N D, et al. Tailoring the conductivity of PEO-based electrolytes for temperature-sensitive printed electronics[J]. Journal of Materials Science, 2013, 48: 5756-5767.

Wang X, Nilsson D, Norberg P. Printable Microfluidic Systems Using Pressure Sensitive Adhesive Material for BiosensingDevices[J]. Biochimica et BiophysicaActa (BBA)-General Subjects, 2013, 1830,4398-4401.

Park H H. Simple shielding evaluation method of small shield cans on printed circuit boards in mobile devices[J]. Electronics Letters, 2013, 49(15): 936-938.

Ihalainen P, Majumdar H, M??tt?nen A, et al. Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications[J]. Biochimica et BiophysicaActa (BBA)-General Subjects, 2013, 1830,4391-4397.

Ando B, Baglio S. All-inkjet printed strain sensors[J].IEEE SENSORS JOURNAL, 2013,13(12): 4874-4879.

Koo J, Park S, Lee W, et al. High Performance Printed Ultraviolet-Sensors Based on Indium–Tin-Oxide Nanocrystals[J].

Japanese Journal of Applied Physics, 2013, 52(11R): 115001.

Karuwan C, Wisitsoraat A, Phokharatkul D, et al. A disposable screen printed graphene–carbon paste electrode and its application in electrochemical sensing[J]. RSC Advances, 2013, 3(48):25792-25799.

Ali Kemal Yetisen, Muhammad Safwan Akram and Christopher R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab Chip, 2013, 13, 2210–2251.

Devi D. Liana, Burkhard Raguse, J. Justin Gooding and Edith Chow, Recent Advances in Paper-Based Sensors, sensors, 2012, 12, 11505-11526.

Martinez, A.W., Phillips, S.T., Carillho, E., and Whitesides, G.M., Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2009, 82, 3–10.

Murilo Santhiago, Emilia W Nery, Glauco P Santos and Lauro T Kubota, Microfluidic paper-based devices for bioanalytical applications, Bioanalysis (2014) 6(1), 89–106.

Piotr Lisowski, Pawe? K. Zarzycki, Microfluidic Paper-Based Analytical Devices (lPADs) and Micro Total Analysis Systems (lTAS): Development, Applications and Future Trends, Chromatographia (2013) 76:1201–1214.

Xu Li, Junfei Tian, Gil Garnier, Wei Shen, Fabrication of paper-based microfluidic sensors by printing, Colloids and Surfaces B: Biointerfaces 76 (2010) 564–570.

Xu Li, David R. Ballerini, and Wei Shen, A persperctive on paper-based microfluidics: Current status and future trends, Biomicrofluidics, 6, 011301 (2012)

Lakshminarayana Polavarapu a and Luis M. Liz-Marzan, Towards low-cost flexible substrates for nanoplasmonic sensing, Phys. Chem. Chem. Phys., 2013, 15, 5288—5300.

Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT., Batch fabrication of disposable screen printed SERS arrays. Lab Chip. 2012, 12 (5):876-81.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. S. Lu, Z. G. Suo and G. M. Whitesides, Foldable Printed Circuit Boards on Paper Substrate, Adv. Funct. Mater., 2010, 20, 28–35.

Sylwia Makulska, Slawomir Jakiela and Piotr Garstecki, A micro-rheological method for determination of blood type, Lab Chip, 2013, 13, 2796-2801.

Lewis, G. G.; DiTucci, M. J.; Phillips, S. T., Quantifying Analytes in Paper-Based Microfluidic Devices Without Using External Electronic Readers, Angew. Chem. Int. Ed., 2012, 51, 12707–12710.

Parcell J, Aydemir N, Devaraj H, et al. A novel air flow sensor from printed PEDOT micro-hairs[J]. Smart Materials and Structures, 2013, 22(11): 112001.

更新日期/Last Update: 2014-02-27