[1]刘艳花,申溯,周小红,等.微纳柔性制造与印刷电子材料[J].中国材料进展,2014,(3):001-06.[doi:10.7502/j.issn.1674-3962.2014.03.01]
 YanHua Liu,Shen Su,Zhou Xiaohong,et al.Micro-Nano Flexible Manufacturing and Printed Electronics Materials[J].MATERIALS CHINA,2014,(3):001-06.[doi:10.7502/j.issn.1674-3962.2014.03.01]
点击复制

微纳柔性制造与印刷电子材料()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第3期
页码:
001-06
栏目:
特约研究论文
出版日期:
2014-03-30

文章信息/Info

Title:
Micro-Nano Flexible Manufacturing and Printed Electronics Materials
作者:
刘艳花申溯周小红方宗豹浦东林朱鹏飞*陈林森*

苏州大学教育部“2011计划”纳米科技协同创新中心,江苏 苏州 215006

*苏州苏大维格光电科技股份有限公司,江苏 苏州215026
Author(s):
YanHua LiuShen Su Zhou Xiaohong Fang Zongbao Pu Donglin Zhu Pengfei* Chen Linsen*

Institute of Information Optical engineering, Soochow University, Suzhou, Jiangsu, 215006

*SVG Optronics,Suzhou, 215026
关键词:
微纳柔性制造印刷电子金属网格透明导电膜
DOI:
10.7502/j.issn.1674-3962.2014.03.01
文献标志码:
A
摘要:
微纳加工技术主要应用在光电子和IC领域,随着国际新一轮印刷电子技术的发展,电路线宽越来越细,对印刷电子材料与应用技术提出更高要求,传统印刷术很难实现数微米以下精密电路。针对国际行业研究现状、工艺及最新进展,详细阐述微纳柔性制造技术的原理与特点,基于微纳图形化激光直写光刻技术、卷对卷纳米压印技术及其配套(微纳填充、转印和软压印)技术,以大尺寸透明导电材料的研发为例,微纳柔性制造在42吋幅面上使印刷电路的线宽达到1.5微米。微纳柔性制造方法属于“加法”制造。本文展望了柔性制造在印刷电子材料产业发展中的前景和需求,指出微纳柔性制造与印刷材料的结合,有可能成为新一轮大尺寸柔性显示与触控、传感器件等产业发展中的有力工具和推动性力量。
Abstract:
Micro-nanofabrication technique is mainly used in optoelectronic and IC field. With the development of a new round of international printed electronics technology, more and more precision line width of the printed electronics devices is required. The related printed materials and application technology should match these trends for the characteristics and performances. However, the traditional printing technologies are difficult to achieve such precision circuits. Based on micro-and nano patterning lithography, the roll to roll nano-imprint technology and related nano-assembly technologies, the developments for the flexible micro-nano manufacturing technology have been briefly introduced. The printed circuit line width has been reduced from dozens of microns to several microns or even submicron, for example, for the large-size transparent conductive films with micro-metal mesh structures, the line with of metal mesh circuits and size of film have been achieved to 1.5 micron and 42”, respectively. This kind of process is also "additive" manufacturing. Therefore, the micro-nano flexible manufacturing will become one of the core technologies and the powerful tool of a new round of revolutionary development for the printed electronic materials and devices.

参考文献/References:

[1] D. Fattal, Z. Peng, T. Tran, et al. A multi-directional backlight for a wide-angle glasses-free three-dimensional display[J]. Nature, 2013 (495): 348-351.

[2] M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, et al. Mimicking the colourful wing scale structure of the Papilio blumei butterfly[J]. Nature Nanotechnoloy, 2010 (5): 511-515.

[3] Hui Wu, DeshengKong, Zhichao Ruan, Po-Chun Hsu, Shuang Wang, ZongfuYu, Thomas J. Carney, Liangbing Hu, Shanhui Fan and Yi Cui, A transparent electrode based on a metal nanotrough network[J]. Nature Nanotechnoloy,2013 (8):421-425.

[4] S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Kim, K. S. Kim, B. Ozyilmaz, J. Ahn, B. H. Hong, S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnoloy. 2010 (5): 574-578.

[5] Tae-Hee Han, Youngbin Lee, Mi-Ri Choi, Seong-Hoang-Hoon Bae, Byung Hee Hong,Jong-Hyun Ahn and Tae-Woo Lee. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nature Photonics. 2012, (6): 105-110.

[6] Jorik van de Groep, Pierpaolo Spinelli and Albert Polman. Transparent conducting silver nanowire networks[J].Nano Lett.2012 (12): 3138-3144.

[7] Dong hwa Lee, Hyu ngjin Lee, um i Ahn, Young jun Jeong, Dae-Young Lee and Youngu Lee. Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices[J]. Nanoscale. 2013 (5): 7750-7755.

[8] Ruiyi Chen, Suprem R.Das, Changwook Jeong, Mohammad Ryyan Khan, David B. Janes and Muhammad A. Alam. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes[J].Adv. Funct. Mater. 2013 (10): 5150-5158.

[9] Yong Hyun Kim, Jonghee Lee, Simone Hofmann, Malte C. Gather, Lars Müller-Meskamp and Karl Leo. Achieving High Efficiency and Improved Stability in ITO-Free Transparent Organic Light-Emitting Diodes with Conductive Polymer Electrodes[J]. Adv. Funct. Mater. 2013 (23): 3763-3769.

[10] Xiaokai Li, Yeonwoong Jung, Kelsey Sakimoto, Teng-Hooi Goh, Mark A. Reed and Andr′e D. Taylor. Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells[J]. Energy Environ. Sci. 2013 (6): 879-887.

[11] Tsutomu Nakanishi, Akira Fujimoto, Ryota Kitagawa, Kumi Masunaga , Kenji Nakamura, Eishi Tsutsumi and Koji Asakawa. Electrical resistivity of transparent metal nanomesh electrodes[J]. Phys. Status Solidi A.2013 (2): 327-334.

[12] Po-Chun Hsu, Shuang Wang, Hui Wu, Vijay K. Narasimhan, Desheng Kong, Hye Ryoung Lee, Yi Cui. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires[J]. Nature Communications. 2013 (4):2522-1-7.

[13] Nicolas Boulanger and David R. Barbero. Nanostructured networks of single wall carbon nanotubes for highly transparent, conductive, and anti-reflective flexible electrodes[J]. Appl. Phys. Lett. 2013 (103): 021116-1-3.

[14] Ning Li, Satoshi Oida, George S. Tulevski, Shu-Jen Han, James B. Hannon, Devendra K. Sadana and Tze-Chiang Chen. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes[J]. Nature Communications. 2013 (4):2294-1-6.

[15] Jung-Yong Lee, Stephen T. Connor, Yi Cui, and Peter Peumans. Solution-processed metal nanowire mesh transparent electrodes[J]. Nano Lett. 2008, 8(2): 689-692.

[16] 陈林森、周小红等,一种透明导电膜及其制作方法,CN 201010533228.9,中国发明专利。

更新日期/Last Update: 2014-02-27