[1]张金伟,郑纪勇,王利,等.仿生防污材料的研究进展[J].中国材料进展,2014,(2):086-94.[doi:10.7502/j.issn.1674-3962.2014.02.03]
 ZHANG Jinwei,ZHENG Jiyong,WANG Li,et al.Progress and Prospect of Antifouling Materials Based on Biomimetic Technology[J].MATERIALS CHINA,2014,(2):086-94.[doi:10.7502/j.issn.1674-3962.2014.02.03]
点击复制

仿生防污材料的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2014年第2期
页码:
086-94
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Progress and Prospect of Antifouling Materials Based on Biomimetic Technology
文章编号:
201402002
作者:
张金伟郑纪勇王利许凤玲孙智勇蔺存国*
(海洋腐蚀与防护重点实验室,中国船舶重工集团公司第七二五研究所,山东 青岛 266101)
Author(s):
ZHANG Jinwei ZHENG Jiyong WANG Li XU Fengling SUN Zhiyong LIN Cunguo*
(State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China)
关键词:
生物污损仿生防污材料生物防污剂微结构水凝胶、抗蛋白吸附
分类号:
O647.4
DOI:
10.7502/j.issn.1674-3962.2014.02.03
文献标志码:
A
摘要:
船舶表面的生物污损会带来极大的危害,如何防除生物污损已成为一个世界难题。尽管氧化亚铜等有毒防污剂可以有效防止海生物的附着污损,但这类防污剂对非目标生物也具有负面作用,可能带来严重的生态问题。随着国际社会对有毒防污剂和海洋环境的日益关注,发展环境友好型防污材料已势在必行。人们经常观察到自然界许多生物并没有被其它生物种类寄生聚居,这是因为在自然界中生物自身存在着各不相同但极为有效的防污机制,包括化学性质、物理性质、机械清理、生活习性,以及各种防污机制的组合等,这为研制环境友好型仿生防污材料提供了依据。本文简要综述了海洋环境中仿生防污材料的研究进展,重点介绍了基于生物防污剂、表面微结构、水凝胶、抗蛋白吸附等特性进行防污的仿生材料的研究,并阐述了我国在该领域已经取得的重要技术突破和主要技术成果,展望了仿生防污技术的发展趋势。
Abstract:
Biofouling on the surfaces of ship hulls can bring about some unwanted and detrimental consequences, and it has been recognized as a widespread problem. Toxic compounds, such as copper-based antifoulant, can prevent the happening of biological fouling, but they have negative impacts on non-target organisms and lead to detrimental ecological effects, thus it is necessary to develop new eco-friendly fouling-resistant materials. It is often observed that many plants and animals don’t experience biological fouling. Their antifouling methods usually come from chemical, physical, mechanical, behavioral or combinatorial mechanisms. Natural antifouling mechanisms may be used as the basis for antifouling materials, and most attention has been devoted to designs based on natural antifoulants, microtopography, hydrogel and protein-resistance. In this paper, the progress of biomimetic antifouling materials with natural antifoulants and various surface features, such as microtopography, hydrogel and protein-resistance, were introduced. Additionally, some significant research results on biomimetic antifouling materials in china were also presented, and the development trend of this field in the future was prospected.

参考文献/References:

[1] Hellio C, Yebra D M. Introduction [M] // Claire H, Diego Y. Advances in Marine Antifouling Coatings and Technologies. Washington DC,Woodhead Publishing Limited, 2009: 1-16.

[2] Schultz, MP. Effects of Coating Roughness and Biofouling on Ship Resistance and Powering [J]. Biofouling, 2007 (23): 331-341.

[3] Ma Z Z, Zhou J P, et al. 防污漆对透声性能的影响[J].Paint & Coatings Industry, 1984 (2): 10-12.

[4] Schultz M P, Bendick J A, Holm E R, et al. Economic Impact of Biofouling on a Naval Surface Ship [J]. Biofouling, 2011 (27): 87-98.

[5] Evans L V, Clarkson N. Antifouling Strategies in the Marine Environment [J]. Journal of applied bacteriology symposium supplement, 1993 (74): 119-124.

[6] Qiu J W, Thiyagarajan V, Cheung S, et al. Toxic Effects of Copper on Larval Development of the Barnacle Balanus Amphitrite [J]. Marine Pollution Bulletin, 2005 (51): 688-693.

[7] Katranitsas A, Castritsi-Catharios J, Persoone G. The Effects of A Copper-based Antifouling Paint on Mortality and Enzymatic Activity of a Non-target Marine Organism [J]. Marine Pollution Bulletin, 2003 (46): 1491-1494.

[8] Ralston E, Swain G. Bioinspiration-the Solution for Biofouling Control [J]. Bioinsp. Biomim., 2009 (4): 1-9.

[9] Qian P Y. A Brief Overview of Recent Progress in Screening for Antifouling Marine Natural Products and Studying of Their Molecular Mechanisms [J]. Chinese Bulletin of Life Sciences, 2012, 24 (9): 1026-1034.

[10] Guenther J, Walker-Smith G, Waren A, et al. Fouling-resistant Surfaces of Tropical Sea Stars [J]. Biofouling, 2007 (23): 413-418.

[11] Clare A S, Marine Natural Product Antifoulants Status and Potential [J]. Biofouling, 1996 (9): 211-219.

[12] Lewis J A. Marine Biofouling and its Prevention on Underwater Surface [J]. Materials Forum, 1998 (22): 41-61.

[13] Duan D X, Lin C G, Zheng J Y. Screen and Identification of Marine Bacteria with Antifouling Property [J]. Marine Environmental Science, 2010 (29):649-652.

[14] Zhang X, Chen X G, Duan D X, et al. Antifouling Activities of Metabolic Product Produced by Marine Bacteria [J]. Development and Application of Materials, 2013, 28(4): 26-31.

[15] Kjelleberg S, Steinberg P. Surface Warfare in the Sea [J]. Microbiology Today, 2001 (28): 134-135.

[16] Smyeniotopoulos V, Adbatis D, Tziveleka L A, et al. Acetylene Sesquiterpeniod Esters from the Green Alga Caulerpa prolifera [J]. Journal of Natural Products, 2003 (66): 21-24.

[17] Todd J S, Zimmerman R C, Crews P, et al. The Antifouling Activity of Natural and Synthetic Acid Sulphate Eaters [J]. Phytochemistry, 1993 (34): 401-404.

[18] Wisespongpand P, Kuniyoshi M. Bioactive Phlorogiucinols from the Brown Alga Zoonaria Diesingiana [J]. Journal of Applied Phycology, 2003 (15): 25-228.

[19] Yang L H, Lee O O, Jin T, et al. Antifouling Properties of 10 Beta-formamidokalihinol-A and Kalihinol a Isolated from the Marine Sponge Acanthella Cavernosa [J]. Biofouling, 2006 (22): 23-32.

[20] Tomono Y, Hirota H, Fusetani N. Isogosterones A-D, Antifouling 13, 17-Secosteroids from an Octocoral Dendronephthya sp [J]. Journal of Organic Chemistry, 1999 (64): 2272-2275.

[21] Brennan A B, Baney R H, Carman M L. Surface Topography for Non-toxic Bioadhesion Control: US, 7143709 [P]. 2006-12-05.

[22] Schumacher J F, Carman M, Estes T G, et al. Engineered Antifouling Microtopographies-effect of Feature Size, Geometry, and Roughness on Settlement of Zoospores of the Green Alga Ulva [J], Biofouling, 2007 (23): 55 -62.

[23] Magin M M, Long C J, Cooper S P, et al. Engineered Antifouling Microtopographies: the Role of Reynolds Number in a Model that Predicts Attachment of Zoospores of Ulva and Cells of Cobetia marina [J]. Biofouling, 2010 (26): 719-727.

[24] Rosenhahn A, Ederth T, Pettitt M E. Advanced Nanostructures for the Control of Biofouling: the FP6 Integrated Project AMBIO [J]. Biointerphases, 2008 (3): 1-5.

[25] Zheng J Y, Lin C G, Zhang J W, et al. Antifouling Performance of Surface Microtopographies Based on Sea Star Luidia quinaria [J]. Key Engineering Materials, 2013 (562-565): 1290-1295.

[26] Scardino A J, Harvey E, de Nys R. Testing Attachment Point Theory: Diatom Attachment on Microtextured Polyimide Biomimics [J]. Biofouling, 2006 (22): 55-60.

[27] Scardino A J, Harvey E, de Nys R. Attachment Point Theory Revisited: The Fouling Response to A Microtextured Matrix [J]. Biofouling, 2008 (24):45-53.

[28] Long C J, Schumacher J F, Robinson P A, et al. A Model that Predicts the Attachment Behavior of Ulva linza Zoospores on Surface Topography [J]. Biofouling, 2010 (26): 411-419.

[29] Decker J T, Chelsea M K, Long C J, et al. Engineered Antifouling Microtopographies: an Energetic Model that Predicts Cell Attachment [J]. Langmuir, 2013 (29): 13023-13030.

[30] Han X, Zhang D Y. Replication of Shark Skin Based on Micro-electroforming [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011 (42): 229-234.

[31] Wang L, Lin C G, Yang L H, et al. Preparation of Nano/micro-scale Column-like Topography on PDMS Surfaces via Vapor Deposition: Dependence on Volatility Solvents [J]. Applied Surface Science, 2011 (258): 265-269.

[32] Liu H L, Hu Y. Microphas Seperation and Stucture Evolution of Complex Materials [J].CIESC Journal, 2003 (54): 440-447.

[33] Ucar I O, Cansoy C E, Erbil H Y, et al. Effect of Contact Angle Hysteresis on the Removal of the Sporelings of the Green Alga Ulva from the Fouling-release Coatings Synthesized from Polyolefin Polymers [J]. Biointerphases, 2010 (5): 75-84.

[34] Rasmussen K, Willemsen P R. ?stgaard K. Barnacle Settlement on Hydrogels [J]. Biofouling, 2002 (18): 177-191.

[35] Ekblad T, Bergström G, Ederth T, et al. Poly(ethylene glycol)-containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments [J]. Biomacromolecules, 2008 (9): 2775-2783.

[36] Zhang J W, Lin C G, Shao J J, et al. Preparation and Application of Poly(Acrylamide-Silicone) Antifouling Copolymer [J]. Modern Paint and Finishing, 2008 (11): 9-11.

[37] Zhang J W, Lin C G, Zhou J, et al. Influence of Polyacrylamide Modified Silicone on Adhesion of Diatom and Mussels [J]. Marine Enviromental Science, 2010 (29): 904-907.

[38] Lin C G, Zhang J W, Wang L, et al. Study on Fouling-resistant Performance Improvement of Silicone-based Coating with Poly(Acrylamide-Silicone) [J]. Int. J. Electrochem. Sci., 2013 (8): 6478-6492.

[39] Krishnan S, Ayothi R, Hexemer A, et al. Anti-biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains [J]. Langmuir, 2006 (22): 5075-5086.

[40] Lind J L, Heimann K, Miller E A, et al. Substratum Adhesion and Gliding in a Diatom are Mediated by Extracellular Proteoglycans [J]. Planta, 1997 (203): 213-217.

[41] Zhang Z, Chao T, Chen S F, et al. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides [J]. Langmuir, 2006 (22): 10072-10077.

[42] Feng W, Zhu S P, Ishihara K, et al. Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl phosphorylcholine) via Surface Initiated Atom Transfer Radical Polymerization [J]. Langmuir, 2005 (21): 5980-5987.

[43] Chang Y, Chen S F, Zhang Z, et al. Highly Protein Resistant Coatings from Well-defined Diblock Copolymers Containing Sulfobetaines [J]. Langmuir, 2006 (22): 2222-2226.

[44] Zhang Z, Chen S F, Chang Y, et al. Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings [J]. Journal of Physical Chemistry B, 2006 (110): 10799-10804.

[45] Zhang Z, Chen S F, Jiang SY. Dual-functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization [J]. Biomacromolecules, 2006 (7): 3311-3315.

[46] He Y, Hower J, Chen S F, et al. Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-assembled Monolayers in the Presence of Water [J]. Langmuir, 2008 (24): 10358-10364.

[47] Chen S F, Zhang J, Li L Y, et al. Strong Resistance of Phosphorylcholine Self-assembled Monolayers to Protein Adsorption: Insights into Nonfouling Properties of Zwitterionic Materials [J]. J. Am. Chem. Soc., 2005 (127): 14473-14478.

[48] Zhang H, Wang H, Lin C G, et al. Molecular Dynamics Simulations of Surface Hydration Layers Near Non-fouling Polymer Membranes [J]. A cta Chim. Sinica., 2013 (71): 649-656.

[49] Zhang H, Hu L M, Lin C G, et al. Molecular Dynamics Simulation of Interaction between Lysozyme and Non-fouling Polymer Membranes [J]. Acta. Polymerica. Sinica., 2014 (0): 99-106.

[50] Moro T, Takatori Y, Ishihara K, et al. Surface Grafting of Artificial Joints with a Biocompatible Polymer for Preventing Periprosthetic Osteolysis [J]. Nature Materials, 2004 (3): 829-836.

[51] Xu F L, Lin C G , Zhang J W, et al. Poly(sulfobetaine methacrylate)-modified Dimethylpolysiloxane with Improved Antibiofouling Property [J]. Asian Journal of Chemistry, 2013 (25): 8011-8013.

[52] Phillippi A L, Surface Flocking as a Possible Anti-biofoulant [J]. Aquaculture Science, 2001(195): 225-238.

[53] Ma M, Hill R M. Superhydrophobic Surfaces [J]. Current Opinion in Colloid and Interface Science, 2006 (11): 193-202.

[54] Zhang J W, Lin C G, Wang L, et al. The Influence of Water Contact Angle on the Colonization of Diatoms (Navicula sp and Pinnularia sp) and Ulva Spores (Pertusa) [J]. Key Engineering Materials, 2013 (562-565): 1229-1233.

[55] Becker K. Attachment Strength and Colonization Patterns of Two Macrofouling Species on Substrata with Different Surface Tension [J]. Marine biology, 1993(117): 301-309.

[56] Zhao Q. Tailored Surface Free Energy of Membrane Diffusers to Minimize Microbial Adhesion [J]. Appli. Surf. Sci., 2004 (230): 371-378.

[57] Brady R F J, Singer I L. Mechanical Factors Favoring Release from Fouling Release Coating [J]. Biofouling, 2000 (15): 73-81.

[58] Sun Y, Guo S, Walker G C, et al. Surface Elastic Modulus of Barnacle Adhesive and Release Characteristics from Silicone Surfaces [J]. Biofouling, 2004 (20): 279-289.

[59] Chung J Y, Chaudhury M K. Soft and Hard Adhesion [J]. J. Adhesion, 2005 (81): 1119-1145.

[60] Zhang J W, Lin C G, Wang L, et al. The Influence of Elastic Modulus on the Adhesion of Fouling Organism to Poly(dimethylsiloxane) (PDMS) [J]. Advanced Materials Research, 2011 (152-153): 1466-1470.

[61] Finlay J A. The Influence of Surface Wettability on the Adhesion Strength of Settled Spores of the Green Alga Enteromorpha and the Diatom Amphora [J]. INTEGR. COMP. BIOL., 2002 (42): 1116-1122.

[62] Aldred N. Mussel (Mytilus edulis) Byssus Deposition in Response to Variations in Surface Wettability [J]. J. R. Soc. Interface, 2006 (22): 37-43.

[63] Holland R, Dugdale T, Wetherbee R, et al. Adhesion and Motility of Fouling Diatoms on a Silicone Elastomer [J]. Biofouling, 2004(20): 323-329.

[64] Stafslien S, Daniels J, Christianson B. Combinatorial Materials Research Applied to the Development of New Surface Coatings III. Utilisation of a High-throughput Multiwell Plate Screening Method to Rapidly Assess Bacterial Biofilm Retention on Antifouling Surfaces [J]. Biofouling, 2007 (23): 37-44.

[65] Casse F, Stafslien S, Bahr J A, et al. Combinatorial Materials Research Applied to the Development of New Surface Coatings V: Application of a Spinning Water-jet for the Semi-high Throughput Assessment of the Attachment Strength of Marine Fouling Algae [J]. Biofouling, 2007 (23): 121-130.

[66] Watermann B T, Dadhne B, Sievers S, et al. Bioassays and Selected Chemical Analysis of Biocide-free Antifouling Coatings [J]. Chemosphere, 2005 (60): 1530-1541.

[67] Rittschofa D, Orihuelaa B, Stafslienb S. Barnacle Reattachment: a Tool for Studying Barnacle Adhesion [J]. Biofouling, 2008 (24): 1-9.

[68] Kim J, Nyren-Erickson E, Stafslien S. Release Characteristics of Reattached Barnacles to Non-toxic Silicone Coatings [J]. Biofouling, 2008 (24): 313–319.

[69] Zhang J W, Lin C G, Wang L, et al. Study on the Correlation of Lab Assay and Field Test for Fouling-release Coatings [J]. Progress in Organic Coatings, 2013 (76): 1430-1434.

更新日期/Last Update: 2014-02-13