[1]王倍洲,王有伟,刘建军,等.锂空气电池正极界面催化反应机理[J].中国材料进展,2015,(12):056-60.[doi:10.7502/j.issn.1674-3962.2015.12.11]
 WANG Beizhou,WANG Youwei,LIU Jianjun,et al.Catalytic Reaction Mechamism in the Positive Electrode Interface of Lithium Air Battery[J].MATERIALS CHINA,2015,(12):056-60.[doi:10.7502/j.issn.1674-3962.2015.12.11]
点击复制

锂空气电池正极界面催化反应机理()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2015年第12期
页码:
056-60
栏目:
特约研究论文
出版日期:
2015-12-25

文章信息/Info

Title:
Catalytic Reaction Mechamism in the Positive Electrode Interface of Lithium Air Battery
作者:
王倍洲12王有伟2刘建军2陆文聪1
(1. 上海大学化学系
(2.中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室
Author(s):
WANG Beizhou12 WANG Youwei2  LIU Jianjun2 LU Wencong1
(1. Department of Chemistry, College of Sciences, Shanghai University,
(2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences
关键词:
锂空气电池氧还原反应析氧反应催化机理界面催化第一性原理计算
DOI:
10.7502/j.issn.1674-3962.2015.12.11
文献标志码:
A
摘要:
高比能量锂空气电池是未来大容量纯电动汽车潜在的动力电源技术之一,然而由于充放电动力学速率低限制了其实际性能的提升,导致其充电过电位高、循环性能差、电流密度低、电极材料不稳定、电解质分解等问题。发展高活性的氧还原与析氧催化剂是锂空气电池研究的热点。单纯地通过实验观测过氧化锂在电极催化表面的形成与分解反应有很大挑战,利用第一性原理计算与实验相结合揭示催化反应机理、探求新型高效催化剂受到广泛重视。综述了催化剂与过氧化锂相互作用,建立电荷转移、界面结构、吸附能与催化活性之间关系,进而揭示了高活性氧还原与析氧反应催化剂的特征结构,通过催化剂的表面微观结构设计与晶体结构计算预测发展新型高活性催化剂,以改善锂空气电池电化学性能。
Abstract:
The Li-Air battery with high energy density is considered as one of important energy storage technologies which can be applied in electric vehicles. However, the practical application of Li-Air battery is currently prevented by the slow kinetic rates of discharge/charge reactions, which further results in many electrochemical problems such as high overpotential, poor cyclic performance, low current density, unstable electrodes, and electrolyte decomposition. Developing highly active catalysts in oxygen reduction (ORR) and oxygen evolution (OER) reactions is a hot research topic of Li-Air battery. Directly observing these reactions mechanisms is a challenging task since they occur in the interface between cathodes and Li2O2. The experimental techniques and first-principles calculations are used to reveal catalytic reaction mechanism and develop novel high active catalysts, which have become increasingly important. Herein, we review the interfacial interaction between catalyst and Li2O2 with the aim to make a correlation of catalytic activity with electron transfer, interfacial structure, and adsorption energy of O2 and Li2O2. These discussions are helpful to reveal catalytic descriptor of ORR and OER, design catalytic surface structure and predict new crystal structure, and improve electrochemical performance.
更新日期/Last Update: 2015-12-29