[1]王德法,刘乐全,欧阳述昕,等.基于半导体和纳米金属的高效人工光合成材料体系构建与应用[J].中国材料进展,2017,(1):041-45.[doi:10.7502/j.issn.1674-3962.2017.01.01]
 WANG Defa,LIU Lequan,OUYANG Shuxin,et al.Construction and Application of Efficient Artificial Photosynthetic Material Systems Based on Semiconductors and Nanometals[J].MATERIALS CHINA,2017,(1):041-45.[doi:10.7502/j.issn.1674-3962.2017.01.01]
点击复制

基于半导体和纳米金属的高效人工光合成材料体系构建与应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2017年第1期
页码:
041-45
栏目:
前沿综述
出版日期:
2017-01-31

文章信息/Info

Title:
Construction and Application of Efficient Artificial Photosynthetic Material Systems Based on Semiconductors and Nanometals
作者:
王德法刘乐全欧阳述昕叶金花
天津大学材料科学与工程学院;日本国立物质材料研究机构
Author(s):
WANG Defa LIU Lequan OUYANG Shuxin YE Jinhua
School of Materials Science and Engineering;National Institute for Materials Science
关键词:
综述人工光合成半导体能带工程纳米金属等离子体共振效应光热效应
Keywords:
review artificial photosynthesis semiconductor energy band engineering nanometals plasma resonance effect photothermal effect
DOI:
10.7502/j.issn.1674-3962.2017.01.01
文献标志码:
A
摘要:
通过人工光合成技术把二氧化碳转换成碳氢化合物燃料,是人类梦寐以求的一种太阳能化学转化和利用的理想技术,近年来受到科学界和工业界越来越广泛的关注。从以下3个技术途径综述了近年来基于半导体和纳米金属的宽光谱响应高效人工光合成材料体系的构建与应用:①从人工光合成热力学条件出发,基于半导体能带工程设计制备新型高效人工光合成材料;②利用纳米贵金属表面等离子共振效应,设计和制备基于纳米金属的宽广谱响应人工光合成体系,可以有效拓展其光吸收范围至近红外区;③利用VIII过度族金属光热效应,设计与制备基于VIII族金属纳米粒子的全光谱响应人工光合成体系,可以有效拓展光吸收范围至红外区,使人工光合成体系具有全光谱响应。特别关注在上述人工光合成材料体系中非极性CO2分子活化、表/界面现象及光化学反应微观机制,为开发高效人工光合成材料体系提供理论和实验依据。
Abstract:
Photoreduction of CO2 into hydrocarbon fuels using artificial photosynthesis is an ideal technology of solar-to-chemical energy conversion, which has been attracting more and more attention from both the academia and industry. In the review article, we report on the progress in the construction and application of new-type of wide-spectrum-responsive highly efficient artificial photosynthetic materials based on semiconductors and nanometals according to the following three routes: ① Design and synthesis of new semiconductor-based artificial photosynthetic materials on the basis of energy band engineering, i.e., with the guidance of energy band theory, the materials thus developed should be satisfied with the requirements of thermodynamics of artificial photosynthesis while being able to absorb as much as possible the solar energy; ② design and synthesis of nanometal-based artificial photosynthetic materials with wide-spectrum-response to the near infrared range on the basis of local surface plasmonic resonance (LSPR) effect of noble metals; ③ design and synthesis of whole-spectrum-responsive artificial photosynthetic materials system on the basis of photothermal effect from group VIII metal nanoparticles. Particular attention has been paid to the activation of nonpolar CO2 molecules, photophysical and photochemical phenomena on the surface/interface, and the elucidation of mechanisms relating to the artificial photosynthetic process. We expect that this review will provide useful theoretical guidelines for developing highly efficient artificial photosynthetic materials system.
更新日期/Last Update: 2017-01-19