[1]宋晓琳,陈贵锋,关丽秀,等.MoS2为基纳米复合材料的制备及性能研究进展[J].中国材料进展,2017,(12):031-35.[doi:10.7502/j.issn.1674-3962.2017.12.07]
 Song Xiaolin,Chen Guifeng,Guan Lixiu,et al.Review on preparation and properties of MoS2 based nanocomposites[J].MATERIALS CHINA,2017,(12):031-35.[doi:10.7502/j.issn.1674-3962.2017.12.07]
点击复制

MoS2为基纳米复合材料的制备及性能研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2017年第12期
页码:
031-35
栏目:
前沿综述
出版日期:
2017-12-31

文章信息/Info

Title:
Review on preparation and properties of MoS2 based nanocomposites
作者:
宋晓琳陈贵锋关丽秀任慧陈士强陈洪建陶俊光
河北工业大学材料科学与工程学院新型功能材料重点实验室,河北工业大学理学院
Author(s):
Song Xiaolin Chen Guifeng Guan Lixiu Ren Hui Chen Shiqiang Chen Hongjian Tao Junguang
1 Key Lab for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology;2 School of Science, Hebei University of Technology,
关键词:
MoS2纳米复合材料光催化电化学析氢电池性能
Keywords:
MoS2 Nanocomposite materials Photocatalysis Electrochemical hydrogen evolution reaction Battery performance
DOI:
10.7502/j.issn.1674-3962.2017.12.07
文献标志码:
A
摘要:
二硫化钼(MoS2)是一种层状过渡族金属硫化物材料,由于其单层独特的电子结构及物理化学性能被广泛的应用 在各个领域,包括光降解有机染料、电化学析氢、及太阳能电池等方面。近几年,二硫化钼纳米材料由于比表面积较大、 禁带宽度窄、优秀的电学性能及其较高的电子迁移率等,引起人们的强烈关注,但其内部存在缺陷,因此作为一种单一的半导体材料,限制了其在许多方面的应用。此综述介绍了MoS2的不同形貌结构及其最新的制备方法,除此之外,可以通过MoS2界面改性处理的手段耦合其他半导体,增加其活性位点,降低电子空穴的复合速率,提高其循环稳定性。最后,对其环境和能源方面的应用进行总结介绍。
Abstract:
MoS2 is a prototype of layered transition metal dichalcogenides. Owing to its unique electronic structure and physical and chemical performance, it has been widely used in areas of photocatalytical degradation of organic dyes, electrochemical hydrogen evolution reaction, and solar cells, etc. In recent years, MoS2 nanomaterials have drawn increased attentions due to its high specific surface area, narrow band gap, excellent electrical properties and high electron mobility. However, its intrinsic defect structures limit its applications in many ways. This review introduces different preparation methods for MoS2 with varied structure and morphologies. In addition, MoS2-based functional materials can be engineered by the interface modification with increased active sites, which reduces the electron-hole recombination rate thus higher quantum yield and enhances the cycle stability. In the end, we review its applications in areas of environment and energy usage.
更新日期/Last Update: 2017-11-28