[1]董国艳,乔鹏武,李振飞.光子带隙超材料研究进展[J].中国材料进展,2019,(01):022-29.[doi:10.7502/j.issn.1674-3962.2019.01.03]
 DONG Guoyan,QIAO Pengwu,LI Zhenfei.Research Progress of PhotonicBandgap Metamaterials[J].MATERIALS CHINA,2019,(01):022-29.[doi:10.7502/j.issn.1674-3962.2019.01.03]
点击复制

光子带隙超材料研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2019年第01期
页码:
022-29
栏目:
前沿综述
出版日期:
2019-01-29

文章信息/Info

Title:
Research Progress of PhotonicBandgap Metamaterials
作者:
董国艳乔鹏武李振飞
(中国科学院大学 光电学院,北京 101408)
Author(s):
DONG Guoyan QIAO Pengwu LI Zhenfei
School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 101408,China
关键词:
光子带隙光子晶体超材料光拓扑态零折射率
Keywords:
photonic bandgap photonic crystal metamaterial optical topological state zero refractive index
DOI:
10.7502/j.issn.1674-3962.2019.01.03
文献标志码:
A
摘要:
光子带隙超材料是一种可用于控制和操纵光传导的极具吸引力的人造材料,通常是由周期性电介质、金属、超导体等组合而成的微结构或纳米结构。光子带隙可理解为在晶体中传播的光在高、低介电常数区域的界面处发生多次反射而干涉相消,类似于固体物理中的电子带隙。针对近年来光子带隙超材料研究领域的几个热门方向——光子晶体光纤、光学拓扑态、Dirac点零折射率和带隙调制发光,从凝聚态物理学理论出发,通过与电子带隙和Dirac方程理论的比较和拓展,详细介绍了介质基光子晶体、光拓扑绝缘体、Dirac点多重简并、金属和发光材料与光子晶体构成的复合光子带隙超材料的研究进展和应用现状。光子带隙超材料灵活可调控的光学特性不但可以用于设计更高品质的传统光学器件,还可以获得自然界中不存在的奇特属性。我们相信随着现代科技的发展进步,多学科和多方向的交叉融合能够进一步拓宽光子超材料的设计思路,推进理论向实用转化。
Abstract:
Photonicbandgap metamaterial is a kind of attractive manmade material used to manipulate light transmission, which commonly appears as microstructure or nanostructure composed of periodic dielectrics, metals, or even superconductors. The photonic bandgap can be regarded as the light propagating in the photonic crystal undergoes multiple reflections at the interfaces of high and low dielectric constant regions and destructive interference, similar to the electron bandgap of solidstate physics. This paper focuses on several popular fields of photonic bandgap metamaterial research in recent years: photonic crystal fiber, optical topological state, Dirac point zero refractive index and bandgap modulation luminescence, from the theory of condensed matter physics. Comparing with the electronic bandgap and Dirac equation theory, the development and application of dielectric photonic crystals, optical topological insulators, multiple degeneracy at Dirac point, composite photonicbandgap materials composed of metal, luminescent materials and photonic crystals are demonstrated in detail. The flexible and tunable properties of photonic bandgap metamaterials can be used not only to design conventional optical device with higher quality, but also to obtain exotic properties that are not found in nature. We believe that, with the development and progress of modern science and technology, multidisciplinary and multidirectional crossfusion can further broaden the design ideas of photonic metamaterials and promote the theory results to transform to application.
更新日期/Last Update: 2018-12-29