[1]黄陆军,耿 林,彭华新.钛合金与钛基复合材料第二相强韧化[J].中国材料进展,2019,(03):214-222.[doi:10.7502/j.issn.1674-3962.2019.03.03]
 HUANG Lujun,GENG Lin,et al.Strengthening and Toughening Mechanisms of the Second Phase in Titanium Alloys and Titanium Matrix Composites[J].MATERIALS CHINA,2019,(03):214-222.[doi:10.7502/j.issn.1674-3962.2019.03.03]
点击复制

钛合金与钛基复合材料第二相强韧化()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2019年第03期
页码:
214-222
栏目:
前沿综述
出版日期:
2019-03-31

文章信息/Info

Title:
Strengthening and Toughening Mechanisms of the Second Phase in Titanium Alloys and Titanium Matrix Composites
作者:
黄陆军12耿 林12彭华新3
(1.哈尔滨工业大学 先进焊接与连接国家重点实验室,黑龙江 哈尔滨 150001)
(2.哈尔滨工业大学材料科学与工程学院,黑龙江 哈尔滨 150001)
(3.浙江大学材料科学与工程学院 功能复合材料与结构研究所,浙江 杭州310027)
Author(s):
HUANG Lujun1 2 GENG Lin1 2 PENG Huaxin3
(1.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China)
(2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)
(3.Institute of Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)
关键词:
钛合金钛基复合材料第二相强韧化力学性能组织结构
Keywords:
titanium alloystitanium matrix compositesthe second phasetoughening effectmechanical propertymicrostructure
DOI:
10.7502/j.issn.1674-3962.2019.03.03
文献标志码:
A
摘要:
钛合金因具有比强度高、抗腐蚀性优两大突出优点,在航空、航天、航海、交通运输等领域具有广泛的应用,为进一步提高其耐热温度、弹性模量、耐磨性、强度以扩大应用范围,采用合金化、复合化引入第二相来实现强化目的。合金化可以实现固溶强化、纳米第二相强化及其带来的组织细化强韧化,通过变形还可以实现位错强化。复合化可以在钛合金中引入微米增强相,有效提高强化效果,但塑性大幅降低,通过调控增强相分布设计则可以有效解决塑性大幅降低的问题。如单一级准连续网状结构、两级网状网状结构、两级层状-网状结构都表现出优异的室温与高温综合性能,在航空航天等领域具有广泛的应用前景,对飞行器减重设计提供重要支撑。钛合金与钛基复合材料力学性能的大幅提升将依赖于多级结构与多尺度增强相的设计与优化,与其相关的理论计算、数值模拟、高通量制备、强韧化机理、适用于多级多尺度结构的新理论、成形技术与应用将是研究重点。
Abstract:
Titanium alloys have extensively used in the fields of aerospace, sailing, transportation et al. due to their high specific strength and corrosion resistance. To further enhance their high temperature durability, modulus, wear resistance and strength for more application, the secondary phase was introduced into titanium alloys by alloying and composite methods. The alloying method can generate solid solution strengthening effect, the secondary phase strengthening effect and grain refinement toughening effect. In addition, dislocation strengthening effect can be obtained by deformation. The composite method can effectively enhance the strength but sacrifice their ductility by introducing micro-scale reinforcement. It is fortunate to find that the problem of the composite low ductility can be solved by tailoring reinforcement distribution. The prepared composites with quasi-continuous single network microstructure, two-scale network-network microstructure or laminate-network microstructure exhibited superior mechanical properties at both room temperature and high temperatures. Therefore, the composites can effectively support weight loss design of aerocraft, which will attract extensive application prospects in the fields of aerospace et al. The mechanical properties of titanium alloys and titanium matrix composites will be remarkably enhanced based on multi-scale hierarchical microstructure design and optimization. The corresponding theory calculation, numerical simulation, high-flux fabrication technology, toughening mechanisms, the forming technique and application will be the next research points.

备注/Memo

备注/Memo:
基金项目:国家重点研发计划资助项目(2017YFB0703100);国家自然科学基金资助项目(51731009, 51671068 and 51471063)
第一作者:黄陆军,男,1983年生,教授,博士生导师
通讯作者:耿???林,男,1964年生,教授,博士生导师,Email: huanglujun@hit.edu.cngenglin@hit.edu.cn
更新日期/Last Update: 2019-02-28