[1]陈 峰.仿生有序结构羟基磷灰石研究进展[J].中国材料进展,2020,(1):039-52.[doi:10.7502/j.issn.1674-3962.201905006]
 CHEN Feng.Research Progress on Biomimetic Hydroxyapatite Based Materials with Ordered Structures[J].MATERIALS CHINA,2020,(1):039-52.[doi:10.7502/j.issn.1674-3962.201905006]
点击复制

仿生有序结构羟基磷灰石研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2020年第1期
页码:
039-52
栏目:
出版日期:
2020-01-31

文章信息/Info

Title:
Research Progress on Biomimetic Hydroxyapatite Based Materials with Ordered Structures
文章编号:
1674-3962(2020)01-0039-14
作者:
陈 峰
(同济大学附属第十人民医院,上海 200072)
Author(s):
CHEN Feng
(Shanghai Tenth Peoples Hospital, School of Medicine, Tongji University, Shanghai 200072, China)
关键词:
羟基磷灰石仿生结构有序结构生物材料硬组织修复
Keywords:
hydroxyapatite biomimetic structure ordered structure biomaterials hard tissue repair
分类号:
R318.08
DOI:
10.7502/j.issn.1674-3962.201905006
文献标志码:
A
摘要:
羟基磷灰石(hydroxyapatite, HAP)与人体硬组织主要无机组分具有相同的化学组成,因而被认为具备良好的生物相容性、可降解性和生物活性,并已在生物医学领域得到广泛应用。迄今为止,形态丰富的HAP纳米材料及其合成方法已经被报道出来,但是具有仿生有序结构的HAP材料及其制备方法仍然是相关领域最具挑战性的方向。在包括牙釉质、皮质骨和松质骨在内的硬组织中,纳米尺度的HAP通常会按照人体受力分布情况呈可控有序结构排列。因此,通过仿生天然硬组织微结构实现HAP的可控有序组装,有望进一步提升传统HAP基生物材料的力学和生物学性能。近年来,包括氧化铝模板法、有机溶剂/小分子调控法、磷酸氢钙相转化法、高分子/蛋白分子诱导矿化法、冷冻铸造等在内的HAP有序结构制备方法已经被发展出来,并实现了在纳米、微米等尺度上有序结构的制备。最近,作者课题组报道了HAP纳米线的扩大化溶剂热制备方法,并进一步提出了适用于控制HAP纳米线有序排列的表面小分子介导的液相自组装策略,获得了尺寸和方向均可控的宏观尺度HAP纳米线仿生有序结构。相比于传统无序结构HAP基生物材料,具有仿生有序结构的HAP表现出了良好的力学和生物学性能,对新型无机生物材料的设计、制备及其生物医学应用研究具有重要的指导意义。综述了仿生有序结构HAP的研究进展,包括其结构组成、合成方法及调控机制,最后总结了仿生有序结构HAP研究领域当前面临的挑战以及未来的发展前景。
Abstract:
The synthesized hydroxyapatite (HAP) based materials have the similar chemical composition with the main inorganic components in human hard tissues. Therefore, HAP based biomaterials are considered to have good biocompatibility, degradability and biological activity, and have been widely used in biomedical fields. So far, various nanostructural HAP and their synthesis methods have been reported. However, the preparation of biomimetic HAP materials with ordered structure is still a big challenge in the related research fields. In hard tissues including enamel, cortical bone and cancellous bone, HAP nanocrystals are usually arranged in a controlled and ordered structure, according to the distribution of human body forces. Therefore, the biomimetic HAP with ordered structure may be prepared through biomimicking the natural ordered microstructure in hard tissue, which is expected to further enhance the mechanical and biological properties of traditional HAP-based biomaterials. In recent years, various methods have been reported to prepare ordered HAP materials in microscopic scales, including alumina template, organic solvent/small molecule regulation, calcium hydrogen phosphate based phase transformation, polymer/protein induced mineralization, frozen casting, etc. Recently, the author and his coworkers reported a solvothermal method for preparing HAP nanowires, and further developed a superficial small moleculesmediated self-assembly strategy to prepare ordered HAP nanowires structure in macroscopic with controllable size and direction. Compared with the traditional disordered HAP materials, the biomimetic HAP with ordered structure may have good mechanical and biological properties, which is of scientific significance in the design, preparation and biomedical application of new inorganic biomaterials. This review highlights the research progress of biomimetic HAP materials with ordered structure, including the new structures, synthesis methods and regulation mechanisms. Finally, the current challenges and prospects of biomimetic HAP materials with ordered structure are given and discussed.

参考文献/References:

1. Wegst UGK, Bai H, Saiz E, et al. Nature Materials[J], 2015, 14(1), 23-36.
2. Ortiz C, Boyce MC. Science[J], 2008, 319(5866), 1053-1054.
3. Szczes A, Holysz L, Chibowski E. Advances in Colloid and Interface Science[J], 2017, 249, 321-330.
4. Epple M. Acta Biomaterialia[J], 2018, 77, 1-14.
5. Ritchie RO. Nature Materials[J], 2011, 10(11), 817-822.
6. Mao LB, Gao HL, Yao HB, et al. Science[J], 2016, 354(6308), 107-110.
7. Patrick DR, Martine C. Irish Journal of Earth Sciences[J], 2015, 33, 71-75.
8. Salgado AJ, Coutinho OP, Reis RL. Macromolecular Bioscience[J], 2004, 4(8), 743-765.
9. Palmer LC, Newcomb CJ, Kaltz SR, et al. Chemical Reviews[J], 2008, 108(11), 4754-4783.
10. Wang Y, Azais T, Robin M, et al. Nature Materials[J], 2012, 11(8), 724-733.
11. Hughes JM, Cameron M, Crowley KD. American Mineralogist[J], 1989, 74(7-8), 870-876.
12. Okada M, Matsumoto T. Japanese Dental Science Review[J], 2015, 51(4), 85-95.
13. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, et al. Acta Biomaterialia[J], 2013, 9(8), 7591-7621.
14. Aoki H, Akao M, Shin Y, et al. Medical Progress through Technology[J], 1987, 12(3-4), 213-220.
15. Hata M, Okada K, Iwai S, et al. Acta Crystallographica Section B-Structural Science[J], 1978, 34(Oct), 3062-3064.
16. Deng L, Li D, Yang Z, et al. Biomedical materials and engineering[J], 2017, 28(4), 361-377.
17. Aina V, Lusvardi G, Annaz B, et al. Journal of Materials Science: Materials in Medicine[J], 2012, 23(12), 2867-2879.
18. Chen F, Huang P, Zhu YJ, et al. Biomaterials[J], 2011, 32(34), 9031-9039.
19. Iijima K, Hashizume M. Protein and Peptide Letters[J], 2018, 25(1), 25-33.
20. Chen X, Yang B, Qi C, et al. Dalton Transactions[J], 2016, 45(4), 1648-1656.
21. Zhao XY, Zhu YJ, Chen F, et al. CrystEngComm[J], 2013, 15(39), 7926-7935.
22. Shiba K, Motozuka S, Yamaguchi T, et al. Crystal Growth & Design[J], 2016, 16(3), 1463-1471.
23. Zhao H, Zhu YD, Sun J, et al. Chemical Communications[J], 2014, 50(83), 12519-12522.
24. Chen F, Zhu YJ, Wang KW, et al. CrystEngComm[J], 2011, 13(6), 1858-1863.
25. Zhang YG, Zhu YJ, Chen F, et al. ACS Applied Materials & Interfaces[J], 2017, 9(9), 7918-7928.
26. Zhang YG, Zhu YJ, Chen F, et al. CrystEngComm[J], 2017, 19(14), 1965-1973.
27. Qi ML, He K, Huang ZN, et al. JOM[J], 2017, 69(8), 1354-1360.
28. Sharifi S, Mokhtarpour M, Jahangiri A, et al. Biointerface Research in Applied Chemistry[J], 2018, 8(6), 3695-3699.
29. Hao LJ, Yang H, Zhao NR, et al. Powder Technology[J], 2014, 253, 172-177.
30. Qi ML, Xiao GY, Lu YP. Acta Metallurgica Sinica-English Letters[J], 2016, 29(7), 609-613.
31. Chen Y, Sun ZH, Li YY, et al. Journal of Materials Chemistry B[J], 2017, 5(4), 807-816.
32. Chen F, Li C, Zhu YJ, et al. Biomaterials Science[J], 2013, 1(10), 1074-1081.
33. Ding GJ, Zhu YJ, Cheng GF, et al. Materials Letters[J], 2015, 160, 242-245.
34. Zhao XY, Zhu YJ, Chen F, et al. CrystEngComm[J], 2013, 15(1), 206-212.
35. Cao SW, Zhu YJ, Wang KW, et al. Journal of Inorganic Materials[J], 2011, 26(5), 458-466.
36. Qi C, Zhu YJ, Lu BQ, et al. Journal of Materials Chemistry[J], 2012, 22(42), 22642-22650.
37. Wu L, Dou YD, Lin KL, et al. Chemical Communications[J], 2011, 47(42), 11674-11676.
38. Chen F, Zhu YJ, Zhao XY, et al. CrystEngComm[J], 2013, 15(22), 4527-4531.
39. Ma MY, Zhu YJ, Li L, et al. Journal of Materials Chemistry[J], 2008, 18(23), 2722-2727.
40. Zhao XY, Zhu YJ, Qi C, et al. Chemistry-an Asian Journal[J], 2013, 8(6), 1313-1320.
41. Zamperini CA, Andre RS, Longo VM, et al. Journal of Nanomaterials[J], 2013, 2013, 174398.
42. Chen F, Zhu YJ. Current Nanoscience[J], 2014, 10(4), 465-485.
43. Haider A, Haider S, Han SS, et al. RSC Advances[J], 2017, 7(13), 7442-7458.
44. Lu BQ, Zhu YJ, Chen F, et al. Chemistry-a European Journal[J], 2014, 20(23), 7116-7121.
45. Liu XG, Lin KL, Qian R, et al. Chemistry-a European Journal[J], 2012, 18(18), 5519-5523.
46. Yang Z, Huang Y, Chen ST, et al. Journal of Materials Science[J], 2005, 40(5), 1121-1125.
47. Yuan Y, Liu CS, Zhang Y, et al. Materials Chemistry and Physics[J], 2008, 112(1), 275-280.
48. Xia W, Lausmaa J, Thomsen P, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials[J], 2012, 100B(1), 75-81.
49. Lu ZZ, Xu H, Xin MD, et al. Journal of Physical Chemistry C[J], 2010, 114(2), 820-825.
50. Hayakawa S, Li YQ, Tsuru K, et al. Acta Biomaterialia[J], 2009, 5(6), 2152-2160.
51. Wang GC, Lu ZF, Zhao XB, et al. Journal of Materials Chemistry B[J], 2013, 1(19), 2455-2462.
52. Nassif N, Gobeaux F, Seto J, et al. Chemistry of Materials[J], 2010, 22(11), 3307-3309.
53. Banks E, Nakajima S, Shapiro IC, et al. Science[J], 1977, 198(4322), 1164-1166.
54. Collins AM, Skaer NJV, Cheysens T, et al. Advanced Materials[J], 2009, 21(1), 75-78.
55. Hartgerink JD, Beniash E, Stupp SI. Science[J], 2001, 294(5547), 1684-1688.
56. Bleek K, Taubert A. Acta Biomaterialia[J], 2013, 9(5), 6283-6321.
57. Deville S, Saiz E, Nalla RK, et al. Science[J], 2006, 311(5760), 515-518.
58. Liu X, Lin K, Wu C, et al. Small[J], 2014, 10(1), 152-159.
59. Zhang Q, Liu Y, Zhang Y, et al. Materials Letters[J], 2013, 107, 337-339.
60. Zou Z, Liu X, Chen L, et al. Journal of Materials Chemistry[J], 2012, 22(42), 22637-22641.
61. Lu BQ, Zhu YJ, Chen F. Chemistry-a European Journal[J], 2014, 20(5), 1242-1246.
62. Wang X, Zhuang J, Peng Q, et al. Advanced Materials[J], 2006, 18(15), 2031-2034.
63. Studart AR. Advanced Materials[J], 2012, 24(37), 5024-5044.
64. Zhao N, Wang Z, Cai C, et al. Advanced Materials[J], 2014, 26(41), 6994-7017.
65. Mirkhalaf M, Dastjerdi AK, Barthelat F. Nature Communications[J], 2014, 5, 3166.
66. Bouville F, Maire E, Meille S, et al. Nature Materials[J], 2014, 13(5), 508-514.
67. Bai H, Walsh F, Gludovatz B, et al. Advanced Materials[J], 2016, 28(1), 50- 56.
68. Li CX, Born AK, Schweizer T, et al. Advanced Materials[J], 2014, 26(20), 3207-3212.
69. He WX, Rajasekharan AK, Tehrani-Bagha AR, et al. Advanced Materials[J], 2015, 27(13), 2260-2264.
70. He WX, Kjellin P, Currie F, et al. Chemistry of Materials[J], 2012, 24(5), 892-902.
71. Cheng Q, Huang C, Tomsia AP. Advanced Materials[J], 2017, 29(45), 1703155.
72. Ruan Q, Liberman D, Zhang Y, et al. ACS Biomaterials Science & Engineering[J], 2016, 2(6), 1049-1058.
73. Hui JF, Wang X. Chemistry-a European Journal[J], 2011, 17(25), 6926-6930.
74. Qi C, Tang QL, Zhu YJ, et al. Materials Letters[J], 2012, 85, 71-73.
75. Reardon PJT, Handoko AD, Li L, et al. Journal of Materials Chemistry B[J], 2013, 1(44), 6170-6176.
76. Costa DO, Dixon SJ, Rizkalla AS. ACS Applied Materials & Interfaces[J], 2012, 4(3), 1490-1499.
77. Cao MH, Wang YH, Guo CX, et al. Langmuir[J], 2004, 20(11), 4784-4786.
78. Ould-Ely T, Luger M, Kaplan-Reinig L, et al. Nature Protocols[J], 2011, 6(1), 97-104.
79. Lignier P, Bellabarba R, Tooze RP. Chemical Society Reviews[J], 2012, 41(5), 1708-1720.
80. Chen F, Zhu YJ. ACS Nano[J], 2016, 10(12), 11483-11495.
81. Yang RL, Zhu YJ, Chen FF, et al. ACS Nano[J], 2018, 12(12), 12284-12295.
82. Yu HP, Zhu YJ, Lu BQ. Chemical Engineering Journal[J], 2019, 360, 1633-1645.
83. Tertuliano OA, Greer JR. Nature Materials[J], 2016, 15(11), 1195-1202.
84. Chen PY, McKittrick J, Meyers MA. Progress in Materials Science[J], 2012, 57(8), 1492-1704.
85. Zhang YG, Zhu YJ, Xiong ZC, et al. ACS Applied Materials & Interfaces[J], 2018, 10(15), 13019-13027.
86. Bi H, Chen IW, Lin T, et al. Advanced Materials[J], 2015, 27(39), 5943-5949.
87. Xue Y, Dai P, Zhou M, et al. ACS Nano[J], 2017, 11(1), 558-568.
88. Yin J, Li X, Zhou J, et al. Nano Letters[J], 2013, 13(7), 3232-3236.
89. Pettigrew KA, Long JW, Carpenter EE, et al. ACS Nano[J], 2008, 2(4), 784-790.
90. Bono MS, Jr., Anderson AM, Carroll MK. Journal of Sol-Gel Science and Technology[J], 2010, 53(2), 216-226.
91. Li H, Zhu YJ, Jiang YY, et al. ChemNanoMat[J], 2017, 3, 259-268.

备注/Memo

备注/Memo:
收稿日期:2019-05-09修回日期:2019-06-18 基金项目:国家自然科学基金资助项目(31771081,51472259);上海市科委资助项目(18ZR1445100,19441901900)作者简介:陈峰,男,1981年生,研究员,博士生导师, Email:fchen@tongji.edu.cn
更新日期/Last Update: 2020-01-06