[1]胡忠超,王亮,庄铭翔,等.热障涂层裂纹扩展的数值模拟研究进展[J].中国材料进展,2020,(10):740-753.[doi:10.7502/j.issn.1674-3962.202006017]
 HU Zhongchao,WANG Liang,ZHUANG Mingxiang,et al.Research Progress of Crack Growth of Thermal Barrier Coatings via Numerical Simulation[J].MATERIALS CHINA,2020,(10):740-753.[doi:10.7502/j.issn.1674-3962.202006017]
点击复制

热障涂层裂纹扩展的数值模拟研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2020年第10期
页码:
740-753
栏目:
出版日期:
2020-10-30

文章信息/Info

Title:
Research Progress of Crack Growth of Thermal Barrier Coatings via Numerical Simulation
文章编号:
1674-3962(2020)10-0740-14
作者:
胡忠超12王亮2庄铭翔2张桓瑜2李广书2王铀3 杨勇1
(1. 河北工业大学材料科学与工程学院,天津 300130)(2. 中国科学院上海硅酸盐研究所 集成计算材料研究中心,上海 201899)(3.哈尔滨工业大学材料科学与工程学院,黑龙江 哈尔滨 150001)
Author(s):
HU Zhongchao12 WANG Liang2 ZHUANG Mingxiang2 ZHANG Huanyu2 LI Guangshu2 WANG You3 YANG Yong1
(1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China) (2. Integrated Computational Materials Research Centre, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China) (3. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)
关键词:
热障涂层有限元分析热力耦合表界面裂纹界面应力
Keywords:
thermal barrier coatings finite element method thermal-mechanical coupling interface-surface crack interface stress
分类号:
TG174.44;TG111.3
DOI:
10.7502/j.issn.1674-3962.202006017
文献标志码:
A
摘要:
大气等离子喷涂(APS)制备的热障涂层(TBCs)在热循环过程中由于热应力的累积引起热生长氧化物(TGO)界面周围裂纹的扩展,最终导致涂层的失效。深入了解热障涂层的裂纹萌生、扩展问题,对评估TBCs的可靠性和耐久性具有重要意义。实际上,在TBCs的制造和使用过程中,后续的实验表征方法并不能反映其真实情况。有限元计算(FEM)在这些问题的研究中起着重要的作用,特别是在计算热障涂层的隔热和断裂失效问题上非常有效。综述了有限元法在裂纹形态、裂纹位置、裂纹密度对涂层界面应力的影响及相关失效问题研究中的研究进展。随着有限元技术的发展,采用基于虚拟裂纹闭合技术(VCCT)、扩展有限元法(XFEM)和内聚力模型(CZM)研究TBCs的裂纹扩展行为,利用这些方法可以对TBCs的失效模式进行实时动态监测,最终实现TBCs在实际使用条件下的寿命预测。
Abstract:
Crack propagation around the TGO (thermally grown oxide) interface are formed by the accumulation of thermal stress during the thermal cycling process, which leads to the failure of thermal barrier coatings (TBCs). To systematically understand the crack initiation and propagation of TBCs are vital to evaluate the reliability and durability of TBCs. In fact, the following experimental characterization methods after coating failure cannot reflect the real situation in the process of manufacturing and using TBCs. Finite element method (FEM) plays a significant role in the study of these problems, especially in the calculation of thermal insulation and fracture failure of TBCs. In this paper, the research progress of finite element method in the study of the influence of interface crack position, crack shape and crack density on the interface stress of coating and related failure problems is reviewed. The fracture mechanics method and the finite element method are used to calculate or simulate the failure of TBCs caused by cracks under the actual conditions. With the development of FEM technology, the crack growth behavior of TBCs has been simulated via the virtual crack closed technique (VCCT), extended finite element (XFEM) and cohesive zone model (CZM). The failure patterns of the TBCs can be monitored timely and dynamically considering these methods and the life prediction of the TBCs under the actual service conditions is expected to be realized eventually.

备注/Memo

备注/Memo:
收稿日期:2020-06-16修回日期:2020-09-17 基金项目:上海市自然科学基金项目(19ZR1479600);国家自然科学基金项目(51671208, 91960107)第一作者:胡忠超,男,1993年生,硕士研究生通讯作者:王亮,男,1982年生,副研究员,硕士生导师, Email:l_wang@mail.sic.ac.cn 杨勇,男,1980年生,教授,博士生导师, Email:yangyonghebut@163.com
更新日期/Last Update: 2020-10-11