[1]李定玉,王树彬,徐念东,等.基于力热能量密度等效原理的热障涂层损伤数值研究[J].中国材料进展,2020,(11):871-877.[doi:10.7502/j.issn.1674-3962.202006035]
 LI Dingyu,WANG Shubin,XU Niandong,et al.Numerical Simulation of Thermal Barrier Coating Damage Failure Based on the ForceHeat Equivalence Energy Density Principle[J].MATERIALS CHINA,2020,(11):871-877.[doi:10.7502/j.issn.1674-3962.202006035]
点击复制

基于力热能量密度等效原理的热障涂层损伤数值研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2020年第11期
页码:
871-877
栏目:
出版日期:
2020-11-30

文章信息/Info

Title:
Numerical Simulation of Thermal Barrier Coating Damage Failure Based on the ForceHeat Equivalence Energy Density Principle
文章编号:
1674-3962(2020)11-0871-07
作者:
李定玉12王树彬2徐念东2李卫国2
(1. 重庆科技学院建筑工程学院,重庆 401331)(2. 重庆大学航空航天学院,重庆 400030)
Author(s):
LI Dingyu12 WANG Shubin2 XU Niandong2 LI Weiguo2
(1. School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China) (2. College of Aerospace Engineering, Chongqing University, Chongqing 400030, China)
关键词:
热障涂层失效能密度有限元损伤塑性蠕变
Keywords:
thermal barrier coating failure energy density finite element method damage plastic creep
分类号:
TG174.44
DOI:
10.7502/j.issn.1674-3962.202006035
文献标志码:
A
摘要:
热障涂层是保障燃气轮机涡轮叶片、火箭发动机在极端高温有氧环境服役的核心技术之一,其损伤失效机理仍然是目前该领域的难点。基于力热能量密度等效原理并考虑塑性变形能,推导了一个适用于热障涂层在循环热载荷下的温度相关性损伤失效判据,并结合有限元方法分析了循环热载荷下热障涂层的失效能密度的分布情况,重点讨论了陶瓷层(TC)表面升温、保温和降温3个典型阶段考虑塑性变形能的失效能密度分布与单纯考虑拉伸效应弹性应变能的失效能密度分布的差异,并对循环热载荷条件下热障涂层的损伤失效行为进行了模拟。结果表明,造成热障涂层损伤失效的裂纹并非一直沿着TC/TGO往波谷扩展,并且热生长氧化层(TGO)波峰顶部不容易产生裂纹,这两个关键现象与实验所得结果吻合,验证了推导的温度相关性损伤失效判据的准确性,并克服了基于传统断裂力学的VCCT技术、Cohesive单元法和扩展有限元法等的局限性,为热障涂层的强度评估与安全性评价提供了科学依据。
Abstract:
Thermal barrier coating (TBC) is one of the essential technologies to ensure the safety of gas turbine blades and rocket engines under the service condition of extremely high temperature and oxidation atmosphere. However, the damage failure mechanism of TBCs is still a challenge in this field. In this paper, a temperature-dependent damage failure criterion for TBCs considering the plastic deformation energy under thermal cycling was proposed based on the force-heat equivalence energy density principle. Meanwhile, combined with the finite element method, the failure energy density distribution in TBCs under thermal cycling was analyzed. The differences of the failure energy density distribution in ceramic top coat (TC) layer during three typical stages as heating, holding and cooling between two different simulations, one considering the plastic deformation energy and the other only with the tensile elastic strain energy were discussed, respectively. Moreover, the damage failure behaviors of TBCs under thermal cycling were simulated. The results showed that the cracks which caused the damage failure of TBCs did not always propagate along the boundary of TC / TGO to the trough, and it was not easy for cracks to appear on the top of the wave crest of TGO layer. These two key phenomena were consistent with the experimental results, which verified the accuracy of the temperature dependent damage failure criterion derived in this paper. The deduced criterion could overcome the limitations involved in VCCT technology, cohesive element method and extended finite element method based on traditional fracture mechanics, and provide a scientific basis for strength and safety evaluation of TBC.

备注/Memo

备注/Memo:
收稿日期:2020-06-29 基金项目:国家自然科学基金项目(11727802,11672050, 11602043);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0240)第一作者:李定玉,男,1987年生,讲师,硕士生导师, Email:ldy0322@cqust.edu.cn 通讯作者:李卫国,男,1976年生,教授,博士生导师, Email:wgli@cqu.edu.cn
更新日期/Last Update: 2020-11-01