[1]李仲杰,董安平,杜大帆,等.脱合金制备纳米多孔金属在植入领域研究进展[J].中国材料进展,2023,42(04):304-313.[doi:10.7502/j.issn.1674-3962.202103007]
 LI Zhongjie,DONG Anping,DU Dafan,et al.Research Progress of Nanoporous Metal Prepared by Dealloying in Implantation Field[J].MATERIALS CHINA,2023,42(04):304-313.[doi:10.7502/j.issn.1674-3962.202103007]
点击复制

脱合金制备纳米多孔金属在植入领域研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第04期
页码:
304-313
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Research Progress of Nanoporous Metal Prepared by Dealloying in Implantation Field
文章编号:
1674-3962(2023)04-0304-10
作者:
李仲杰1董安平12杜大帆1许浩1张婷1邢辉1祝国梁1孙宝德12
1.上海交通大学材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室,上海 200240 2.上海交通大学 金属基复合材料国家重点实验室,上海 200240
Author(s):
LI Zhongjie1DONG Anping12DU Dafan1XU Hao1ZHANG Ting1 XING Hui1 ZHU Guoliang1 SUN Baode12
1. Shanghai Key Laboratory of Advanced Hightemperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
脱合金纳米多孔制备工艺应用形式金属植入材料研究进展
Keywords:
dealloying nanoporous preparation technology application form metallic implant materials research progress
分类号:
O646
DOI:
10.7502/j.issn.1674-3962.202103007
文献标志码:
A
摘要:
纳米多孔金属因其特殊的结构带来的优异性能,在催化和能源等领域得到了广泛的应用。在医用植入领域,具有微/纳米尺度双连续多孔结构的仿生材料也逐渐引起重视,但目前传统的成型工艺很难实现该类结构的制备。近年来,由于纳米多孔金属与人体骨骼中的多孔结构类似且具有良好的综合性能,开始被尝试引入医用植入领域以获得新型金属植入材料。现有研究发现,纳米多孔结构的金属材料在力学与生物学上均有着相对较好的性能表现,故在植入领域有着极大的应用潜力。聚焦于脱合金制备纳米多孔金属,系统综述了该类纳米多孔金属在植入领域的研究进展。首先介绍了常见的金属植入材料,然后重点阐述了脱合金法制备纳米多孔金属植入材料的具体制备工艺,并基于所制备的纳米多孔金属具有的结构特征列举了该类结构金属在植入领域的具体应用形式,最后对纳米多孔金属在植入领域的发展前景进行了展望。
Abstract:
Nanoporous metals have been widely used in many fields containing catalysis and energy owing to their unique structural characteristics. In medical implant field, the biomimetic materials with bicontinuous porous structure at the micro/nanoscale have attracted much attention, but the traditional forming methods are hard to achieve this structure. In recent years, due to the excellent performance and similarity with the porous structure in human bones, nanoporous metals have been introduced into the implant to obtain new metallic implant materials. Previous studies have found that metallic implant materials with nanoporous structure exhibit relatively good performance in mechanics and biology, and have great application potential in the field of implantation. In this work, the research status of the nanoporous metals prepared by dealloying techniques for implantation application is systematically reviewed. Firstly, the common metallic implant materials are introduced, then the basic preparation techniques and specific application forms of nanoporous metallic implant materials prepared by the dealloying method are emphatically described, and finally, their development prospects is discussed as well.

参考文献/References:

\[1\]CHEN Q, THOUAS G A. Materials Science & Engineering R: Reports\[J\], 2015, 87: 1-57. \[2\]IBRAHIM M Z, SARHAN A A D, YUSUF F, et al. Journal of Alloys and Compounds\[J\], 2017, 714: 636-667. \[3\]LANG X, HIRATA A, FUJITA T, et al. Nature Nanotechnology\[J\], 2011, 6(4): 232-236. \[4\]MA W S, YIN K, GAO H, et al. Nano Energy\[J\], 2018, 54: 349-359. \[5\]MCKENNA K. Nature Materials\[J\], 2012, 11: 775-780. \[6\]WITTSTOCK A, ZIELASEK V, BIENER J, et al. Science\[J\], 2010, 327(5963): 319-322. \[7\]郑玉峰, 吴远浩. 金属学报\[J\], 2017, 53(3): 257-297. ZHENG Y F, WU Y H. Acta Metallurgica Sinica\[J\], 2017, 53(3): 257-297. \[8\]钱漪, 袁广银. 金属学报\[J\], 2021,57(3): 272-282. QIAN Y, YUAN G Y. Acta Metallurgica Sinica\[J\], 2021, 57(3): 272-282. \[9\]郑玉峰, 刘嘉宁. 中国材料进展\[J\], 2020, 39(2): 92-99. ZHENG Y F, LIU J N. Materials China\[J\], 2020, 39(2): 92-99. \[10\]GEETHA M, SINGH A K, ASOKAMANI R, et al. Progress in Materials Science\[J\], 2009, 54(3): 397-425. \[11\]KAUR M, SINGH K. Materials Science & Engineering: C\[J\], 2019, 102: 844-862. \[12\]MACONACHIE T, LEARY M, LOZANOVSKI B, et al. Materials & Design\[J\], 2019, 183: 108-137. \[13\]LI Y, JAHR H, ZHOU J, et al. Acta Biomaterialia\[J\], 2020, 115: 29-50. \[14\]YUAN L, DING S, WEN C. Bioactive Materials\[J\], 2018, 4: 56-70. \[15\]ZHANG X Z, LEARY M, TANG H P, et al. Current Opinion in Solid State and Materials Science\[J\], 2018, 22: 75-99. \[16\]汤慧萍. 中国材料进展\[J\], 2020, 39(1): 55-62. TANG H P. Materials China\[J\], 2020, 39(1): 55-62. \[17\]MOORAJ S, WELBORN S S, JIANG S, et al. Scripta Materialia\[J\], 2020, 177: 146-150. \[18\]WEGST U G K, HAO B, EDUARDO S, et al. Nature Materials\[J\], 2015, 14(1): 23-36. \[19\]PICKERING H W, WAGNER C. Journal of the Electrochemical Society\[J\], 1967, 114(7): 698-706. \[20\]FORTY A J. Nature\[J\], 1979, 282(5739): 597-598. \[21\]SIERADZKI K, CORDERMAN R R, SHUKLA K, et al. Philosophical Magazine A\[J\], 1989, 59(4): 713-746. \[22\]OPPENHEIM I C, TREVOR D J, CHIDSEY C E D, et al. Science\[J\], 1991, 254(5032): 687-689. \[23\]HAN J, LI C, LU Z, et al. Acta Materialia\[J\], 2019, 163: 161-172. \[24\]CHUANG A, ERLEBACHER J. Materials\[J\], 2020, 13(17): 3706. \[25\]李亚宁, 李广忠, 张文彦, 等. 稀有金属材料与工程\[J\], 2013, 42(10): 2197-2200. LI Y N, LI G Z, ZHANG W Y, et al. Rare Metal Materials and Engineering\[J\], 2013, 42(10): 2197-2200. \[26\]TAKEUCHI A, INOUE A. Materials Transactions\[J\], 2005, 46(12): 2817-2829. \[27\]SOLDATOV I V, OKULOV A V, LUTHRINGER B, et al. Materials Science and Engineering: C\[J\], 2018, 88: 95-103. \[28\]GASKEY B, MCCUE I, CHUANG A, et al. Acta Materialia\[J\], 2019, 164: 293-300. \[29\]SONG T, TANG H P, LI Y, et al. Corrosion Science\[J\], 2020, 169: 108600. \[30\]WADA T, YUBUTA K, INOUE A, et al. Materials Letters\[J\], 2011, 65(7): 1076-1078. \[31\]OKULOV I V, WEISSMLLER J, MARKMANN J. Scientific Reports\[J\], 2017, 7(1): 20. \[32\]OKULOV I V, WILMERS J, JOO S H, et al. Scripta Materialia\[J\], 2021, 194: 113660. \[33\]OKULOV I V, OKULOV A V, VOLEGOV A S, et al. Scripta Materialia\[J\], 2018, 154: 68-72. \[34\]OKULOV A V, VOLEGOV A S, WEISSMLLER J, et al. Scripta Materialia\[J\], 2018, 146: 290-294. \[35\]BERGER S A, OKULOV I V. Metals\[J\], 2020, 10(11): 1450. \[36\]WADA T, SETYAWAN A D, YUBUTA K, et al. Scripta Materialia\[J\], 2011, 65(6): 532-535. \[37\]OKULOV I V, JOO S H, OKULOV A V, et al. Nanomaterials\[J\], 2020, 10(8): 1479. \[38\]KIM J W, TSUDA M, WADA T, et al. Acta Materialia\[J\], 2015, 84: 497-505. \[39\]WEI D, KOIZUMI Y, CHIBA A. Materials Letters\[J\], 2018, 219(15): 256-259. \[40\]ZENG L, YOU C, CAI X, et al. Journal of Materials Research and Technology\[J\], 2020, 9(3): 6909-6915. \[41\]OKULOV I V, LAMAKA S V, WADA T, et al. Nano Research\[J\], 2018, 11(12): 6428-6435. \[42\]MOKHTARI M, WADA T, LE B C, et al. Corrosion Science\[J\], 2020, 166: 108468. \[43\]ZHAO C, WADA T, de ANDRADE V, et al. ACS Applied Materials & Interfaces\[J\], 2017, 9: 34172-34184. \[44\]WADA T, KATO H. Scripta Materialia\[J\], 2013, 68(9): 723-726. \[45\]OKULOV I V, GESLIN P A, SOLDATOV I V, et al. Scripta Materialia\[J\], 2019, 163: 133-136. \[46\]HEIDEN M, JOHNSON D, STANCIU L. Acta Materialia\[J\], 2016, 103: 115-127. \[47\]WADA T, YUBUTA K, KATO H. Scripta Materialia\[J\], 2016, 118: 33-36. \[48\]ZHANG F M, WANG L L, LI P, et al. Advanced Engineering Materials\[J\], 2017, 19(2): 1600600. \[49\]ZHANG F M, LI P, YU J, et al. Journal of Materials Research\[J\], 2017, 32(8): 1528-1540. \[50\]ZHAO C, KISSLINGER K, HUANG X, et al. Materials Horizons\[J\], 2019, 6: 1991-2002. \[51\]LU Z, LI C, HAN J, et al. Nature Communications\[J\], 2018, 9(1): 276. \[52\]ADAMEK G. Acta Physica Polonica\[J\], 2014, 126(4): 871-874. \[53\]LI Z J, XU H, DONG A P, et al. Materials Characterization\[J\], 2021, 173: 110953. \[54\]MCCUE I, RYAN S, HEMKER K, et al. Advanced Engineering Materials\[J\], 2016, 18(1): 46-50. \[55\]WANG K, WEISSMUELLER J. Advanced Materials\[J\], 2013, 25(9): 1280-1284. \[56\]FUKUZUMI Y, WADA T, KATO H. Surface Improvement for Biocompatibility of Ti6Al4V by Dealloying in Metallic Melt\[C\]//SASAKI K, SUZUKI O, TAKAHASHI N. Interface Oral Health Science 2014, Proceedings of the 5th International Symposium for Interface Oral Health Science. Sendai: Springer Tokyo, 2014: 93-101. \[57\]ZANG D M, YI H, GU Z D, et al. Advanced Materials\[J\], 2017, 29(2): 1-7. \[58\]SABA F, GARMROUDINEZHAD E, ZHANG F M, et al. Journal of Materials Research\[J\], 2020, 35(19): 2597-2609. \[59\]SONG T, YAN M, QIAN M. Corrosion Science\[J\], 2018, 134: 78-98. \[60\]ZHANG Y Z, SUN X H, NOMURA N, et al. Small\[J\], 2019, 15: 1805432. \[61\]XIANG Y H, LIU L Z, SHAO J C, et al. Acta Materialia\[J\], 2020, 186: 105-115. \[62\]XIA C, MA X, ZHANG X, et al. Bioactive Materials\[J\], 2020, 5(2): 377-386. \[63\]JIN G, QIN H, CAO H, et al. Biomaterials\[J\], 2014, 35(27): 7699-7713. \[64\]LI Q, JIANG G, WANG D, et al. Materials Science and Engineering: C\[J\], 2016, 69: 154-159. \[65\]KHODAEI M, VALANEZHAD A, WATANABE I. Journal of Alloys and Compounds\[J\], 2017, 720: 22-28.

备注/Memo

备注/Memo:
收稿日期:2021-03-09修回日期:2021-08-29 基金项目:国家自然科学基金资助项目(52071205,51871152); 上海交通大学“深蓝计划”基金面上项目(SL2020MS019) 第一作者:李仲杰,男,1993年生,博士研究生 通讯作者:董安平,男,1977年生,研究员,博士生导师, Email: apdong@sjtu.edu.cn 邢辉,女,1982年生,副教授,博士生导师, Email: xinghui@sjtu.edu.cn
更新日期/Last Update: 2023-03-22