[1]展旭和,王海龙,丁小明,等.铝合金在海洋环境中的应力腐蚀机理研究进展[J].中国材料进展,2023,42(08):662-668.[doi:10.7502/j.issn.1674-3962.202104018]
 ZHAN Xuhe,WANG Hailong,DING Xiaoming,et al.Research Progress on Stress Corrosion Mechanism of Aluminum Alloy in Marine Environment[J].MATERIALS CHINA,2023,42(08):662-668.[doi:10.7502/j.issn.1674-3962.202104018]
点击复制

铝合金在海洋环境中的应力腐蚀机理研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第08期
页码:
662-668
栏目:
出版日期:
2023-08-31

文章信息/Info

Title:
Research Progress on Stress Corrosion Mechanism of Aluminum Alloy in Marine Environment
文章编号:
1674-3962(2023)08-0662-07
作者:
展旭和1王海龙23丁小明23张天翼4高林星刘超4
1.国家高速列车青岛技术创新中心,山东 青岛 370214 2.中国航发北京航空材料研究院,北京 100095 3.航材国创(青岛)高铁材料研究院有限公司,山东 青岛 370214 4.北京科技大学 新材料技术研究院,北京 100083 5.上海无线电设备研究所,上海 201109
Author(s):
ZHAN Xuhe1 WANG Hailong23 DING Xiaoming23ZHANG Tianyi4 GAO Linxing LIU Chao4
1. National Innovation Center of High Speed Train, Qingdao 370214, China 2. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 3. Aviation Materials National Innovation (Qingdao) High Speed Railway Materials Research Institute Co., Ltd,Qingdao 370214, China 4. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China et al.
关键词:
铝合金应力腐蚀海洋环境热处理工艺应力腐蚀机理
Keywords:
aluminum alloy stress corrosion marine environment heat treatment process stress corrosion mechanism
分类号:
TG172.5
DOI:
10.7502/j.issn.1674-3962.202104018
文献标志码:
A
摘要:
聚焦铝合金在海洋环境中的应力腐蚀行为及影响因素,讨论了海洋环境中铝合金的应力腐蚀机理。海洋环境下铝合金应力腐蚀开裂(stress corrosion cracking, SCC)的形成主要受氢致开裂和阳极溶解过程控制。铝合金的SCC过程可分为4个阶段:铝合金表面钝化膜破裂和点蚀阶段、裂纹萌生阶段、钝化膜的再生与溶解动态平衡阶段以及裂纹扩展阶段。铝合金的合金成分、热处理工艺可以控制其显微组织结构,其中第二相粒子对铝合金的SCC过程起主要作用。海洋环境的温度、pH值、离子种类和浓度等因素也会影响铝合金的SCC行为。结合常用合金元素在铝合金基体中的存在形式及作用、热处理工艺对铝合金应力腐蚀行为影响,以及海洋环境的特点,总结了铝合金在海洋大气、海水环境中的应力腐蚀失效机理,为铝合金在海洋环境中的应用提供应力腐蚀机理解释与分析依据。
Abstract:
This paper focuses on the stress corrosion behavior and influencing factors of aluminum alloy in marine environment, and discusses the stress corrosion mechanism of aluminum alloy in marine environment. The stress corrosion cracking (SCC) of aluminum alloy in marine environment is mainly controlled by hydrogen induced cracking and anodic dissolution process.The SCC process of aluminum alloy can be divided into four stages: aluminum alloy surface passivation film rupture and pitting stage, crack initiation stage, passivation film regeneration and dissolution dynamic equilibrium stage and crack propagation stage. The microstructure of aluminum alloy can be controlled by the alloy composition and heat treatment process, and the second phase particles in aluminum alloy play an important role in the SCC process of aluminum alloy. The SCC behavior of aluminum alloy is also affected by the temperature, pH value, ion type and concentration of marine environment. This paper summarizes the failure mechanism of stress corrosion of aluminum alloy in ocean atmosphere and seawater environment by analyzing the existence form and function of common alloying elements in aluminum alloy matrix, the influence of heat treatment process on stress corrosion behavior of aluminum alloy, and the characteristics of marine environment. It provides the basis for explaining and analyzing the mechanism of stress corrosion of aluminum alloy in marine environment.

参考文献/References:

\[1\]周缤. 6082铝合金应力腐蚀行为及机理研究\[D\]. 长春:长春理工大学,2020. ZHOU B. Stress Corrosion Behavior and Mechanism of 6082 Aluminum Alloy\[D\]. Changchun: Changchun University of Science and Technology, 2020. \[2\]KRISHNAN M A, RAJA V S. Corrosion Science\[J\], 2019(152) : 211-217. \[3\]LEE H, KIM Y, JEONG Y, et al. Corrosion Science\[J\], 2012(55) : 10-19. \[4\]ALEXOPOULOS N D, DALAKOURAS C J, SKARVELIS P, et al. Corrosion Science\[J\], 2012(55): 289-300. \[5\]ALEXOPOULOS N D, CHARALAMPIDOU C, SKARVELIS P, et al. Corrosion Science\[J\], 2017(121) : 32-42. \[6\]TSAI T C, CHANG J C, CHUANG T H. Metallurgical and Materials Transactions A\[J\], 1997, 28(10): 2113-2121. \[7\]CHANG J C, CHUANG T H. Metallurgical and Materials Transactions A\[J\], 1999, 30(12): 3191-3199. \[8\]李文婷. 高强铝合金应力腐蚀开裂过程中的电化学行为研究\[D\]. 武汉:华中科技大学, 2016. LI W T. A Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Engineering\[D\]. Wuhan: Huazhong University of Science and Technology, 2016. \[9\]CUI Z Y, LI X G, XIAO K, et al. Corrosion Science\[J\], 2013(76): 243-256. \[10\]PUIGGALI M, ZIELINSKI A. Corrosion Science\[J\], 1998, 40(4/5): 805-819. \[11\]HANG S, TODA H, SHIMIZU K, et al. Acta Materialia\[J\], 2019, 176(21): 96-108. \[12\]SHIMIZU K, TODA H, FUJIHARA H, et al. Engineering Fracture Mechanics\[J\], 2019, 216(16): 1-13. \[13\]DEJUN K, JINCHUN W. Corrosion Science\[J\], 2015(632): 286-290. \[14\]李琳琳. 6×××系铝合金中第二相Mg2Si的局部腐蚀机理研究\[D\]. 沈阳:沈阳工业大学, 2017. LI L L. Study on the Localized Corrosion Mechanism of the Second Phase Mg2Si in 6××× Series Aluminum Alloys\[D\]. Shenyang: Shenyang University of Technology, 2017. \[15\]KODETOV V, VLACH M, KUDRNOV H, et al. Journal of Thermal Analysis and Calorimetry\[J\], 2021(145): 2991-3002. \[16\]SONG R, DIETZEL W, ZHANG B, et al. Acta Materialia\[J\], 2004(52): 4727-4743. \[17\]杜爱华,龙晋明,裴和中. 中国腐蚀与防护学报\[J\],2008(4): 251-256. DU A H, LONG J M, PEI H Z. Journal of Chinese Society for Corrosion and Protection\[J\],2008(4): 251-256. \[18\]RAO A, VASU V, GOVINDARAJU M, et al. Transactions of Nonferrous Metals Society of China\[J\], 2016, 26(6):1447-1471. \[19\]KOSARI A, TICHELAAR F, VISSER P, et al. Corrosion Science\[J\], 2020(177):108947. \[20\]崔腾飞. 应力与环境因素耦合对铝合金耐久性能的影响\[D\]. 西安:西北工业大学,2017. CUI T F. Effect of Stress and Galvanic Factors on the Durability of Aluminum Alloys\[D\]. Xian: Northwestern Polytechnical University, 2017. \[21\]BIRBILIS N, CAVANAUGH M K, BUCHHEIT R G. Corrosion Science\[J\], 2006(48): 4202-4215. \[22\]de BONFILSLAHOVARY M L, LAFFONT L, BLANC C. Corrosion Science\[J\], 2017(119):60-67. \[23\]LI M C, SEYEUX A, MARCUS P, et al. Corrosion Science\[J\], 2020(176): 109040. \[24\]MORETO J A, MARINO C, FILHO W, et al. Corrosion Science\[J\], 2014(84): 30-41. \[25\]KNIGHT S, POHL K, HOLROYD N, et al. Corrosion Science\[J\], 2015(98): 50-62. \[26\]XIE P, CHEN S Y, CHEN K H, et al. Corrosion Science\[J\], 2019(161): 108184. \[27\]RAO A U, VASU V, GOVINDARAJU M, et al. Transactions of Nonferrous Metals Society of China\[J\], 2016(26): 1447-1471. \[28\]祁文娟. 7050高强度铝合金氢致开裂机理研究\[D\]. 常州:常州大学, 2015. QI W J. A Study on HydrogenInduced Cracking Mechanism of 7050 High Strength Aluminum Alloy\[D\]. Changzhou: Changzhou University, 2015. \[29\]KRISHNAN M A, RAJA V S. Corrosion Science\[J\], 2019(152): 211-217. \[30\]LIU Z Y, HAO W K, WU W, et al. Corrosion Science\[J\], 2019(148): 388-396. \[31\]de BONFILSLAHOVARY M L, JOSSE C, et al. Corrosion Science\[J\], 2019(148): 198-205. \[32\]MA H C, LIU Z Y, DU C W, et al. Corrosion Science\[J\], 2015(100): 627-641. \[33\]WU W, HAO W K, LIU Z Y, et al. Corrosion Science\[J\], 2020(239): 117903. \[34\]李宗雄. 7000系铝合金应力腐蚀行为研究\[D\]. 北京:北京化工大学, 2015. LI Z X, The Stress Corrosion Cracking Behavior of 7000 Series Aluminum Alloy\[D\]. Beijing: Beijing University of Chemical Technology, 2015. \[35\]储威. 杂质元素Si对7050铝合金抗剥落腐蚀和应力腐蚀开裂性能的影响研究\[D\]. 上海:上海交通大学, 2013. CHU W, Study on the Influence of Impurity Element Si on the Exfoliation Corrosion and Stress Corrosion Cracking Behavior of 7075 Aluminum Alloy\[D\]. Shanghai: Shanghai Jiao Tong University, 2013. \[36\]唐农杰. 固溶与时效热处理制度对7050铝合金组织与性能的影响\[D\]. 重庆:重庆大学, 2017. TANG N J, Effect of Solution and Aging Treatment on Microstructure and Properties of 7050 Aluminum Alloy\[D\]. Chongqing: Chongqing University, 2017. \[37\]DONATUS U, TERADA M, OSPINA C R, et al. Corrosion Science\[J\], 2018(131): 300-309. \[38\]苏睿明. 喷射成形7075合金RRA处理工艺优化与合金时效机理研究\[D\]. 沈阳:沈阳工业大学, 2015. SU R M. Optimizing on RRA Treatments and Study on Precipitation Kinetics of Spray Formed 7075 Alloy\[D\]. Shenyang: Shenyang University of Technology, 2015. \[39\]TIAN H Y, WANG X, CUI Z Y, et al. Corrosion Science\[J\], 2018(144): 145-162. \[40\]STANNARD T J, WILLIAMS J J, SINGH S S, et al. Corrosion Science\[J\], 2018(138): 340-352. \[41\]张正. 飞行器用铝合金大气腐蚀的电化学检测研究\[D\]. 天津:天津大学, 2006. ZHANG Z, Research on Electrochemical Detection for Atmospheric Corrosion of Aircraft Aluminum Alloy\[D\]. Tianjin: Tianjin University, 2006. \[42\]WANG L W, LIANG J M, LI H, et al. Corrosion Science\[J\], 2021(178): 109076.

备注/Memo

备注/Memo:
收稿日期:2021-04-13修回日期:2021-09-07 基金项目:国家自然科学基金资助项目(51871024);中央高校基本科研业务费专项资金资助项目(FRF-TP-19-030A1) 第一作者:展旭和,男,1985年生,高级工程师 通讯作者:刘超,男,1988年生,副研究员,硕士生导师, Email: liuchaoustb@163.com
更新日期/Last Update: 2023-05-06