[1]黄庆利,任伊宾,马玉豪,等.可降解锌基合金在骨科领域的研究进展[J].中国材料进展,2023,42(08):631-639.[doi:10.7502/j.issn.1674-3962.202105023]
 HUANG Qingli,REN Yibin,MA Yuhao,et al.Research Progress on Biodegradable Zinc-Based Alloys in Orthopedics[J].MATERIALS CHINA,2023,42(08):631-639.[doi:10.7502/j.issn.1674-3962.202105023]
点击复制

可降解锌基合金在骨科领域的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第08期
页码:
631-639
栏目:
出版日期:
2023-08-31

文章信息/Info

Title:
Research Progress on Biodegradable Zinc-Based Alloys in Orthopedics
文章编号:
1674-3962(2023)08-0631-09
作者:
黄庆利任伊宾马玉豪武夏鹏
沈阳理工大学材料科学与工程学院,辽宁 沈阳 110159
Author(s):
HUANG Qingli REN Yibin MA Yuhao WU Xiapeng
School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,China
关键词:
锌基合金生物相容性力学性能骨科可降解金属
Keywords:
zinc-based alloy biocompatibility mechanical property orthopaedicsdegradable metal
分类号:
TG146.1
DOI:
10.7502/j.issn.1674-3962.202105023
文献标志码:
A
摘要:
进入21世纪以来,随着材料科学的进步,医用金属植入材料从传统的316L不锈钢、钛合金等惰性金属材料逐渐转向可降解金属材料。可降解金属材料由于其良好的生物相容性和适宜的降解速率,可以在完成植入任务时被人体吸收,无需二次手术将内植物取出,从而引起广泛关注。在过去的10多年里,镁和铁及其合金作为医用可降解金属被广泛研究。锌是人体所必需的营养元素之一,因具有良好的生物相容性和适宜的降解速率,锌基合金在最近几年里成为继镁基和铁基合金之后又一具有广泛应用前景的医用可降解金属。然而,对锌基合金的设计和制备等仍处于初步阶段,还有大量的研究工作需要完成。综述了生物降解锌近年来用于骨科领域的研究进展,重点讨论了锌及其合金的力学性能、生物降解性能和生物相容性以及锌的合金化和制造技术之间的关系。
Abstract:
Since the beginning of the 21st century, with the progress of materials science, medical metal implant materials have gradually changed from traditional inert metal materials such as 316L stainless steel and titanium alloy to degradable metal materials. Because of their good biocompatibility and suitable degradation rate, degradable metal materials can be absorbed by human body when they complete the implantation task, and no secondary surgery is needed to remove the implant, which has attracted wide attention. In the past decade, magnesium, iron and their alloys have been widely studied as medical degradable metals. Zinc is one of the essential nutrients for human body.Because of its good biocompatibility and suitable degradation rate, zincbased alloy has become another widely used medical degradable metal in recent years after magnesium-based and iron-based alloys. However, the design and preparation of zinc-based alloys are still in the initial stage, and a lot of research works need to be completed. In this paper, the research progress of biodegradable zinc used in orthopedics in recent years was reviewed. The relationships between the mechanical properties,biodegradability and biocompatibility of zinc and its alloys and the alloying and manufacturing technology of zinc were discussed.

参考文献/References:

\[1\]CHEN Q, THOUAS G A. Materials Science and Engineering: R\[J\], 2015, 87: 1-57. \[2\]ZHENG Y F, GU X N, WITTE F. Materials Science and Engineering: R\[J\], 2014, 77: 1-34. \[3\]TAPIERO H, TEW K D. Biomedicine & Pharmacotherapy\[J\], 2003, 57(9): 399-411. \[4\]郑玉峰,吴远浩. 金属学报\[J\],2017,53(3):257-297. ZHENG Y F,WU Y H. Acta Metallurgica Sinica\[J\], 2017, 53(3): 257-297. \[5\]CHENG J, LIU B, WU Y H, et al. Journal of Materials Science & Technology\[J\], 2013, 29(7): 619-627. \[6\]KATARIVAS LEVY G, GOLDMAN J, AGHION E. Metals\[J\], 2017, 7(10): 402-420. \[7\]KABIR H, MUNIR K, WEN C, et al.Bioactive Materials\[J\], 2021, 6(3): 836-879. \[8\]VENEZUELA J, DARGUSCH M S. Acta Biomaterialia\[J\], 2019, 87: 1-40. \[9\]VOJTECH D, KUBASEK J, SERAK J, et al. Acta Biomaterialia\[J\], 2011, 7(9): 3515-3522. \[10\]LIU X, SUN J, QIU K, et al. Journal of Alloys and Compounds\[J\], 2016, 664: 444-452. \[11\]SUN S, REN Y, WANG L, et al. Materials Science and Engineering: A\[J\], 2017, 701: 129-133. \[12\]TANG Z, NIU J, HUANG H, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2017, 72: 182-191. \[13\]ZHU S, WU C, LI G, et al. Materials Science and Engineering: A\[J\], 2020, 777: 139082. \[14\]MOSTAED E, SIKORAJASINSKA M, MOSTAED A, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2016, 60: 581-602. \[15\]KUBASEK J, VOJTECH D, JABLONSKA E, et al. Materials Science and Engineering: C\[J\], 2016, 58: 24-35. \[16\]YANG H, JIA B, ZHANG Z, et al. Nature Communications\[J\], 2020, 11(1): 401-418. \[17\]XIAO C, WANG L, REN Y, et al. Journal of Materials Science & Technology\[J\], 2018, 34(9): 1618-1627. \[18\]LI H F, XIE X H, ZHENG Y F, et al. Scientific Reports\[J\],2015, 5: 10-19. \[19\]GONG H, WANG K, STRICH R, et al. Journal of Biomedical Materials Research Part B Applied Biomaterials\[J\], 2015, 103(8): 1632-1640. \[20\]QIN Y, WEN P, GUO H, et al. Acta Biomaterialia\[J\], 2019, 98: 3-22. \[21\]YANG Y, YUAN F, GAO C, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2018, 82: 51-60. \[22\]YANG L, GUO P, NIU Z, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2019, 95: 220-231 \[23\]LI H, YANG H, ZHENG Y, et al. Materials & Design\[J\], 2015, 83: 95-102. \[24\]JIA B, YANG H, HAN Y, et al. Acta Biomaterialar\[J\], 2020, 108: 358-372. \[25\]LIU X, SUN J, ZHOU F, et al. Materials & Design\[J\], 2016, 94: 95-104. \[26\]WANG K, TONG X, LIN J, et al. Journal of Materials Science & Technology\[J\], 2021, 74: 216-229. \[27\]LIN J, TONG X, SHI Z, et al. Acta Biomaterialia\[J\],2020, 106: 410-427. \[28\]LIN J, TONG X, WANG K, et al. Journal of Materials Science & Technology\[J\], 2021, 68: 76-90. \[29\]ZHANG L, LIU X Y, HUANG H, et al. Materials Letters\[J\], 2019, 244: 119-122. \[30\]ZHANG W, LI P, SHEN G, et al. Bioactive Materials\[J\], 2021, 6(4): 975-989. \[31\]LIN J, TONG X, SUN Q, et al. Acta Biomaterialia\[J\], 2020, 115: 432-446. \[32\]钱漪,袁广银.金属学报\[J\], 2021, 57(3): 272-282. QIAN Y,YUAN G Y. Acta Metallurgica Sinica\[J\], 2021, 57(3): 272-282. \[33\]ZOU Y, CHEN X,CHEN B. Materials Letters\[J\],2018, 218: 193-196. \[34\]LIU X, SUN J, YANG Y, et al. Materials Letters\[J\], 2016, 162: 242-245. \[35\]JIA B, YANG H, ZHANG Z, et al. Bioactive Materials\[J\], 2021, 6(6): 1588-1604. \[36\]XIAO C, SHI X Y, YU W T, et al. Materials Science and Engineering: C\[J\], 2021, 119: 111435. \[37\]WU S, LIU X, YEUNG K, et al. Materials Science and Engineering: R\[J\], 2014, 80: 1-36. \[38\]ZHANG X Y, FANG G, LEEFLANG M, et al. Acta Biomaterialar\[J\], 2019, 84: 437-452. \[39\]WANG X, XU S, ZHOU S, et al. Biomaterials\[J\], 2016, 83: 127-141. \[40\]ZHANG L, YANG G, JOHNSON B N, et al. Acta Biomaterialar\[J\], 2019, 84: 16-33. \[41\]ZADPOOR A A. Journal of Materials Chemistry B\[J\], 2019, 7(26): 4088-4117. \[42\]LI Y, PAVANRAM P, ZHOU J, et al. Acta Biomaterialar\[J\], 2020, 101: 609-623. \[43\]LI Y, PAVANRAM P, ZHOU J, et al. Biomaterials Science\[J\], 2020, 8(9): 2404-2419. \[44\]LI Y, LI W, BOBBERT F S L, et al. Acta Biomaterialar\[J\], 2020, 106: 439-449. \[45\]COCKERILL I, SU Y, SINHA S, et al. Materials Science and Engineering: C\[J\], 2020, 110: 110738. \[46\]APEK J, JABLONSK E, LIPOV J, et al. Materials Chemistry and Physics\[J\], 2018, 203: 249-258. \[47\]TONG X, SHI Z, XU L, et al. Acta Biomaterialar\[J\], 2020, 102: 481-492. \[48\]HOU Y, JIA G, YUE R, et al. Materials Characterization\[J\], 2018, 137: 162-169. \[49\]XIE Y, ZHAO L, ZHANG Z, et al. Materials Chemistry and Physics\[J\], 2018, 219: 433-443. \[50\]NAGELS J, STOKDIJK M, ROZING P M, et al. Journal of Shoulder and Elbow Surgery\[J\], 2003, 12(1): 35-39. \[51\]JIN H, ZHAO S, GUILLORY R, et al. Materials Science and Engineering: C\[J\], 2018, 84: 67-79. \[52\]ARDAKANI M S, MOSTAED E, SIKORAJASINSKA M, et al. Materials Science and Engineering: A\[J\], 2020, 770(18): 138-150. \[53\]FARGE J C T, WILLIAMS W M. Canadian Metallurgical Quarterly\[J\], 2013, 5(4): 265-272.

备注/Memo

备注/Memo:
收稿日期:2021-05-22修回日期:2021-09-09 基金项目:辽宁省自然基金资助项目(2019-MS-267) 第一作者:黄庆利,男,1995年生,硕士 通讯作者:任伊宾,男,1975年生,教授,硕士生导师, Email: yb.ren@163.com
更新日期/Last Update: 2023-07-28