[1]王长伟,孙树臣,肖发新,等.酸性炉渣基电弧炉炉衬用耐火材料发展探析与展望[J].中国材料进展,2023,42(10):796-805.[doi:10.7502/j.issn.1674-3962.202109011]
 WANG Changwei,SUN Shuchen,XIAO Faxin,et al.Development Analysis and Prospect of Refractory Materials for Acid Slag-Based Arc Furnace Lining: A Review[J].MATERIALS CHINA,2023,42(10):796-805.[doi:10.7502/j.issn.1674-3962.202109011]
点击复制

酸性炉渣基电弧炉炉衬用耐火材料发展探析与展望()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第10期
页码:
796-805
栏目:
出版日期:
2023-10-31

文章信息/Info

Title:
Development Analysis and Prospect of Refractory Materials for Acid Slag-Based Arc Furnace Lining: A Review
文章编号:
1674-3962(2023)10-0796-10
作者:
王长伟孙树臣肖发新涂赣峰
东北大学冶金学院,辽宁 沈阳 110819
Author(s):
WANG Changwei SUN Shuchen XIAO Faxin TU Ganfeng
School of Metallurgy, Northeastern University, Shenyang 110819, China
关键词:
废催化剂酸性玻璃态熔渣腐蚀机理含锆耐火材料含铬耐火材料致密化
Keywords:
scrap catalysts acidic vitrified slag corrosion mechanism refractories containing zirconium refractories containing chromium densification
分类号:
TQ175.71
DOI:
10.7502/j.issn.1674-3962.202109011
文献标志码:
A
摘要:
以熔炼废弃的汽车尾气净化催化剂为代表的酸性炉渣基电弧炉冶炼的特点为冶炼温度高、耐火材料腐蚀严重、炉衬使用寿命短。基于此特征,分析了酸性玻璃态熔渣对耐火材料的腐蚀机理,并综述了酸性炉渣基电弧炉炉衬用耐火材料的研究现状,从Al2O3-SiO2材料、Al2O3-SiO2-ZrO2复合材料、含铬材料、致密化含锆(铬)材料以及碳质和碳化物耐火材料几个角度,分析和比较了这几类耐火材料应用于酸性炉渣基电弧炉炉衬用耐火材料的优缺点,展望了这几类耐火材料在酸性炉渣基高温电弧炉冶炼中应用的可行性,提出含锆致密化耐火材料在高温(1600 ℃)酸性炉渣基电弧炉冶炼中具有较广阔的应用前景。
Abstract:
Represented by melting scrap automobile exhaust catalyst, the smelting characteristic of acidic slag-based electric arc furnace (EAF) is short service life of brusque due to serious corrosion of furnace lining refractories with high temperature. Based on this feature, this paper analyses the corrosion mechanism of refractory by acidic vitrified slag and summarizes the research status of refractories that using in acidic slag-based EAF. The advantages and disadvantages of refractories used in acidic slag-based EAF lining are compared and analyzed, including Al2O3-SiO2 refractory, Al2O3-SiO2-ZrO2 composites, refractories containing chromium, pyknotic refractories containing zirconium (chromium), carbonaceous and carbide refractories. The feasibility of applicating in high temperature acid slag-based EAF of these refractories is prospected. It is proposed that the densified refractories containing zirconium will have a broad application prospect in high temperature (1600 ℃) acid slagbased EAF.

参考文献/References:

\[1\]习小军. 电弧炉熔池内废钢快速熔化机理\[D\]. 北京:北京科技大学, 2021. XI X J. Mechanism of Rapid Melting of Steel Scrap in Electric Arc Furnace Molten Pool\[D\]. Beijing:University of Science and Technology Beijing,2021. \[2\]李磊. 电弧炉电极升降控制算法的研究\[D\]. 沈阳:东北大学, 2012. LI L. Research on Control Strategies of Electrode Regulator System for Electric Arc Furnace\[D\]. Shenyang:Northeastern University,2012. \[3\]World Steel Association. Steel Statistical Yearbooks 2010 to 2021\[EB/OL\]. (2021-12-20)\[2022-01-29\]. https://worldsteelorg/steelbytopic/statistics/steelstatisticalyearbook/. \[4\]李勇, 闫明伟, 秦海霞, 等. 硅酸盐学报\[J\], 2017, 45(9): 1231-1239. LI Y, YAN M W, QIN H X, et al. Journal of the Chinese Ceramic Society\[J\], 2017, 45(9): 1231-1239. \[5\]SINGH S, PRABHAT V, RAMESH C, et al. Process Safety and Environmental Protection\[J\], 2021, 148: 1315-1326. \[6\]MENAD N, KANA N, KANARI N, et al. Waste and Biomass Valorization\[J\], 2021, 12(9): 5187-5200. \[7\]STPHANE G, PATRICK J, MAXIME F, et al. Nature Communications\[J\], 2015, 6(1): 243-248. \[8\]ILYA P, PAPANGELAKIS V G. Journal of Hazardous Materials\[J\], 2017, 321: 737-744. \[9\]BAGHALHA M, PAPANGELAKIS V G, CURLOOK W. Hydrometallurgy\[J\], 2006, 85(1): 42-52. \[10\]KUO Y M, WANG J W, CHAO H R, et al. Journal of Hazardous Materials\[J\], 2008, 152(2): 554-562. \[11\]BASEGIO T, BECK A P, BERNARDES A M, et al. Journal of Hazardous Materials\[J\], 2009, 165(1-3): 604-611. \[12\]YALMALI V S, DESHINGKAR D S, WATTAL P K, et al. Journal of NonCrystalline Solids\[J\], 2007, 353(52-54): 4647-4653. \[13\]YANG Y, XIAO Y, VONCKEN J, et al. Journal of Hazardous Materials\[J\], 2008, 154(1-3): 871-879. \[14\]CHAE J S, CHOI S A, KIM Y H, et al. Journal of Hazardous Materials\[J\], 2016, 313: 78-84. \[15\]GUO B, LIU B, YANG J, et al. Journal of Environmental Management\[J\], 2017, 193: 410-422. \[16\]解雪, 曲志平, 张邦胜, 等. 中国资源综合利用\[J\], 2020, 38(11): 105-109. XIE X, QU Z P, ZHANG B S, et al. China Resources Comprehensive Utilization\[J\], 2020, 38(11): 105-109. \[17\]牛永红, 程国威, 云飞, 等. 应用化工\[J\], 2019, 48(4): 964-969+974. NIU Y H, CHENG G W, YUN F, et al. Applied Chemical Industry\[J\], 2019, 48(4): 964-969+974. \[18\]GONG K, ZELIK V O, YANG K R, et al. Physical Review Materials\[J\], 2019, 5(1): 1-35. \[19\]KOZLOV V V, SHEVCHIK A P, SUVOROV S A, et al. Refractories and Industrial Ceramics\[J\], 2019, 59(5): 502-506. \[20\]李涛, 张杰磊, 彭少君. 中国有色冶金\[J\], 2020, 49(3): 44-48. LI T, ZHANG J L, PENG S J. China Nonferrous Metallurgy\[J\], 2020, 49(3): 44-48. \[21\]LAUNGSAKULTHAI K, CHANDAKHIAW T, WONGNAREE N, et al. Materials Science Forum\[J\], 2020, 6052: 162-167. \[22\]NATH M, GHOSH A, TRIPATHI H S. Corrosion Science\[J\], 2016, 102: 153-160. \[23\]BINGHAM, CONNELLY, HYATT, et al. International Materials Reviews\[J\], 2011, 56(4): 226-242. \[24\]朴明伟. 耐火与石灰\[J\], 2016, 41(4): 36-38. PIAO M W. Refractories & Lime\[J\], 2016, 41(4): 36-38. \[25\]傅崇说. 有色冶金原理\[M\]. 北京:冶金工业出版社, 1993: 20-33. FU C S. Principles of Nonferrous Metallurgy\[M\]. Beijing:Metallurgical Industry Press, 1993: 20-33. \[26\]李享成, 王堂玺, 姜晓, 等. 硅酸盐学报\[J\], 2011, 39(3): 452-457. LI X C, WANG T X, JIANG X, et al. Journal of the Chinese Ceramic Society\[J\], 2011, 39(3): 452-457. \[27\]杨秀丽, 李冰, 杨杨. 耐火与石灰\[J\], 2014, 39(4): 37-39. YANG X L, LI B, YANG Y. Refractories & Lime\[J\], 2014, 39(4): 37-39. \[28\]FANG H J, WANG W Z, HUANG J B, et al. Ceramics International\[J\], 2019, 45(16): 19710-19719. \[29\]LASHMI P G, BALAJI N, KUMAR K A, et al. Ceramics International\[J\], 2019, 45(15): 18255-18264. \[30\]BAHAMIRIAN M, HADAVI S M M, FARVIZI M, et al. Journal of the Australian Ceramic Society\[J\], 2021, 57(1): 215-224. \[31\]ZHANG X F, NIU S P, DENG Z Q, et al. Transactions of Nonferrous Metals Society of China\[J\], 2019, 29(11): 2362-2370. \[32\]LUZ A P, PANDOLFELLI V C. Cermica\[J\], 2011, 57(343): 294-304. \[33\]齐晓青, 李宏, 王玉范. 耐火材料\[J\], 2002, 36(5): 255-258. QI X Q, LI H, WANG Y F. Refractories\[J\], 2002, 36(5): 255-258. \[34\]高振昕, 王战民, 范沐旭, 等. 耐火材料\[J\], 2017, 51(6): 401-407. GAO Z X, WANG Z M, FAN M X, et al. Refractories\[J\], 2017, 51(6): 401-407. \[35\]黄奥, 顾华志, 付绿平, 等. 中国材料进展\[J\], 2017,36(6): 425-431. HUANG A, GU H Z, FU L P, et al. Materials China\[J\], 2017,36(6): 425-431. \[36\]BEERKENS R, van DIJK F, DUNKL M. Glass Science and Technology\[J\], 2004, 77(C7): 35-51. \[37\]张晴, 彭西高. 耐火材料\[J\], 2004, 38(6): 447. ZHANG Q, PENG X G. Refractories\[J\], 2004, 38(6): 447. \[38\]宫本奎, 崔培培, 蔡国庆, 等. 山东冶金\[J\], 2019, 41(5): 38-39. GONG B K, CUI P P, CAI G Q, et al. Shandong Metallurgy\[J\], 2019, 41(5): 38-39. \[39\]MAHAPATRA M K. International Journal of Applied Ceramic Technology\[J\], 2020, 17(2): 606-615. \[40\]HAMIDOUCHE M, BOUAOUADJA N, OLAGNON C, et al. Ceramics International\[J\], 2003, 29(6): 599-609. \[41\]XIANG R F, LI Y R, LI S X, et al. Journal of Technology\[J\], 2020, 17(4): 1688-1692. \[42\]BOCH P, GIRY J. Materials Science and Engineering\[J\], 1985, 71(1/2): 39-48. \[43\]武丽华, 陈福, 赵恩录, 等. 山东陶瓷\[J\], 2008, 31(6): 34-37. WU L H, CHEN F, ZHAO E L, et al. Shandong Ceramics\[J\], 2008, 31(6): 34-37. \[44\]MAIA L H, ABRAO A M, VASCONCELOS W L, et al. Tribology International\[J\], 2015, 92: 519-532. \[45\]MANFREDO L J, MCNALLY R N. Materials Science\[J\], 1984, 19(4): 1272-1276. \[46\]AKSEL C. Ceramics International\[J\], 2003, 29(3): 305-309. \[47\]AKSEL C, RILEY F L, KONIECZNY F. Key Engineering Materials\[J\].2004, 264-268: 1803-1806. \[48\]BOUCHETOU M L, POIRIER J, MORALES L A, et al. Ceramics International\[J\], 2019, 45(10): 12832-12844. \[49\]RENDTORFF N M, GARRIDO L B, AGLIETTI E F. Ceramics International\[J\], 2009, 35(7): 2907-2913. \[50\]SOKOLOV V A, GASPARYAN M D. Refractories and Industrial Ceramics\[J\], 2010, 51(3): 183-186. \[51\]HIRATA T, MORIMOTO T, DEGUCHI A, et al. Materials Transactions\[J\], 2002, 43(10): 2561-2567. \[52\]李红霞, 孙红刚. 耐火材料\[J\], 2018, 52(2): 81-88. LI H X, SUN H G. Refractories\[J\], 2018, 52(2): 81-88. \[53\]李笃斌, 李志军, 商宜农, 等. 山东陶瓷\[J\], 2019, 42(6): 14-15+19. LI D B, LI Z J, SHANG Y N, et al. Shandong Ceramics\[J\], 2019, 42(6): 14-15+19. \[54\]BUSBY T S. Glass Technology\[J\], 1957, 21: 318-329. \[55\]GEORGE S M, HAYCOCK P W, ORMEROD R M. Journal of the European Ceramic Society\[J\], 2018, 38(4): 2202-2209. \[56\]RAHIMI R A, AHMADI A, KAKOOEI S, et al. Journal of the European Ceramic Society\[J\], 2011, 31(5): 715-721. \[57\]BORISOV G B, VOLCHOK Y Y, PASTUSHKOV V G, et al. Atomic Energy\[J\], 2007, 102(3): 211-216. \[58\]孟庆新. 耐火与石灰\[J\], 2018, 43(5): 58-62. MENG Q X. Refractories & Lime\[J\], 2018, 43(5): 58-62. \[59\]钟香崇. 耐火材料\[J\], 2003, 37(1): 1-10. ZHONG X C. Refractories\[J\], 2003, 37(1): 1-10. \[60\]孙荣海, 刘百宽. 耐火与石灰\[J\], 2005, 30(6): 5-19. SUN R H, LIU B K. Refractories & Lime\[J\], 2005, 30(6): 5-19. \[61\]刘小青, 何峰, 房玉. 硅酸盐通报\[J\], 2013, 32(5): 804-807+813. LIU X Q, HE F, FANG Y. Bulletin of the Chinese Ceramic Society\[J\], 2013, 32(5): 804-807+813. \[62\]凌永一, 王珍, 张婧, 等. 耐火材料\[J\], 2021, 55(1): 81-88. LING Y Y, WANG Z, ZHANG J, et al. Refractories\[J\], 2021, 55(1): 81-88. \[63\]许晓海, 冯改山. 耐火材料技术手册\[M\]. 北京:冶金工业出版社, 2000: 641-661. XU X H, FENG G S. Refractory Technical Manual\[M\]. Beijing:Metallurgical Industry Press, 2000: 641-661. \[64\]刘麟瑞, 林彬荫. 工业窑炉用耐火材料手册\[M\]. 北京:冶金工业出版社, 2007: 737-746. LIU L R, LIN B Y. Handbook of Refractories for Industrial Kilns\[M\]. Beijing:Metallurgical Industry Press, 2007: 737-746. \[65\]包卓吾, 黄渊麟, 涂淑进. 玻璃搪瓷与眼镜\[J\], 1984(5): 1-8. BAO Z W, HUANG Y L, TU S J. Glass Enamel & Ophthalmic Optics\[J\], 1984(5): 1-8. \[66\]高振昕, 黄振武, 梁兰芳. 硅酸盐学报\[J\], 2000, 28(3): 291-293. GAO Z X, HUANG Z W, LIANG L F. Journal of the Chinese Ceramic Society\[J\], 2000, 28(3): 291-293.

备注/Memo

备注/Memo:
收稿日期:2021-09-14修回日期:2022-01-29 基金项目:国家重点研发计划项目(2019YFC1907504);东北大学基本科研业务费资助项目(N2125033) 第一作者:王长伟,男,1997年生,硕士 通讯作者:孙树臣,男,1971年生,教授,硕士生导师, Email:sunsc@smm.neu.edu.cn
更新日期/Last Update: 2023-09-28