[1]王富强,张瑞雪,杨立新,等.热处理工艺对高强钛合金组织及力学性能的影响[J].中国材料进展,2023,42(05):415-420.[doi:10.7502/j.issn.1674-3962.202109020]
 WANG Fuqiang,ZHANG Ruixue,YANG Lixin,et al.Effect of Heat Treatment on Microstructure and Mechanical Properties of High Strength Titanium Alloy[J].MATERIALS CHINA,2023,42(05):415-420.[doi:10.7502/j.issn.1674-3962.202109020]
点击复制

热处理工艺对高强钛合金组织及力学性能的影响()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第05期
页码:
415-420
栏目:
出版日期:
2023-05-30

文章信息/Info

Title:
Effect of Heat Treatment on Microstructure and Mechanical Properties of High Strength Titanium Alloy
文章编号:
1674—3962 (2019)04-0000-00
作者:
王富强1 张瑞雪2 杨立新1 王晓巍1 马英杰3 黄森森3 雷家峰3
1. 沈阳飞机工业(集团)有限公司, 辽宁 沈阳 110850 2. 东北大学材料科学与工程学院, 辽宁 沈阳 110819 3. 中国科学院金属研究所 师昌绪先进材料创新中心, 辽宁 沈阳 110016
Author(s):
WANG Fuqiang1 ZHANG Ruixue2 YANG Lixin1 WANG Xiaowei1MA Yingjie3 Huang Sensen3 LEI Jiafeng3
1. Shenyang Aircraft Industry (Group) Co. , Ltd. , Shenyang 110850, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3. Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
关键词:
高强钛合金 热处理 晶粒尺寸 晶界粗化 力学性能
Keywords:
high strength titanium alloy heat treatment grain size grain boundary coarsening mechanical properties
分类号:
TG156.1
DOI:
10.7502/j.issn.1674-3962.202109020
文献标志码:
A
摘要:
近β 高强钛合金广泛应用于航空航天领域, 通过显微组织调控获得良好的强韧性匹配是高强钛合金的研究重点。以一种新型近β 钛合金为研究对象, 通过调控热处理制度获得不同β 晶粒尺寸及不同晶界形貌的组织, 分别研究了β 晶粒尺寸随固溶时间的变化规律、两阶段固溶过程晶界的粗化行为以及晶粒尺寸及晶界形貌对合金力学性能的影响。结果表明: β 相区固溶时间延长导致β 晶粒尺寸增加, 但对合金拉伸及冲击性能没有显著影响; 两阶段固溶中α+β 相区固溶时初生α 相优先沿晶界析出并长大, 使晶界粗化, α+β 相区固溶温度越低晶界粗化效果越明显; 晶界粗化同时降低合金的强度与塑性, 但对冲击韧性没有显著影响。
Abstract:
The near β high-strength titanium alloy is widely used in the aerospace field. Microstructure control is being focused on to achieve a good match between strength and toughness of high-strength titanium alloys. The size of β grains and the morphology of grain boundaries of a novel near β titanium with different heat treatments were characterized in this paper.The grain size was affected by the solution time, and the behavior of grain boundary coarsening was affected by (α+β) phase region solution. The effect of grain size and the morphology of grain boundary on mechanical properties were studied. The results show that the β grains grow up gradually with the extension of solution time in β phase region, and the size of β grains has no significant effect on tensile property and impact toughness. In the process of two-stage solution, the primary α phase precipitates preferentially along the grain boundary, which coarsen the grain boundary. The lower temperature in the (α+β) phase region solution, the more obvious the grain boundary coarsening. The grain boundary coarsening reduces the strength and plasticity of at the same time, but has no significant effect on the impact toughness.

参考文献/References:

[1] WANG H, ZHAO Q, XIN S, et al. Materials Science and Engineering: A[J], 2021, 3: 141626. [2] KANG L M, YANG C. Advanced Engineering Materials[J], 2019, 21(8): 1801359. [3] CHENG J, LI J S, YU S, et al. Metals[J], 2021, 11(1): 11. [4] CHENG J, LI J S, YU S, et al. Frontiers in Materials[J], 2020, 7: 114. [5] CHENG J, WANG H C, LI J S, et al. Frontiers in Materials[J], 2020, 7: 228. [6] 陈玮, 刘运玺, 李志强. 航空材料学报[J], 2020, 40(3): 63- 76. CHEN W, LIU Y X, LI Z Q. Journal of Aeronautical Materials[J], 2020, 40(3): 63-76. [7] 辛社伟, 周伟, 李倩, 等. 中国材料进展[J], 2021, 40(6): 441-445. XIN S W, ZHOU W, LI Q, et al. Materials China[J], 2021, 40 (6): 441-445. [8] WANG Y, CHEN R, CHENG X, et al. Journal of Materials Science & Technology[J], 2019, 35(2): 403-408. [9] ZHOU W, GE P, ZHAO Y Q, et al. Rare Metal Materials and Engineering[ J], 2017, 46(8): 2076-2079. [10] NIINOMI M, INAGAKI I, KOBAYASHI T. Materials Science and Technology[J], 1988, 4(9): 803-810. [11] GAO X, ZHANG L, CHEN X, et al. Materials Characterization [J], 2020, 167: 110492. [12] FENG X, QIU J K, MA Y J, et al. Journal of Materials Science & Technology[J], 2016, 32(4): 362. [13] 郭萍, 赵永庆, 洪权. 材料热处理学报[J], 2018, 39(4): 31-36. GUO P, ZHAO Y Q, HONG Q. Transactions of Materials and Heat Treatment[J], 2018, 39(4): 31-36. [14] PEDERSON R, NIKLASSON F, SKYSTEDT F, et al. Materials Science and Engineering: A[J], 2012, 552: 555-565. [15] LIU X, ZHUANG K, LIN S, et al. Crystals[J], 2017, 7(5): 128-140. [16] HUANG S S, ZHANG J H, MA Y J, et al. Journal of Alloys and Compounds[J], 2019, 791: 575-585. [17] GAO X, ZENG W, ZHANG S, et al. Acta Materialia[J], 2017, 122: 298-309. [18] SHEKHAR S, SARKAR R, KAR S, et al. Materials & Design[J], 2015, 66: 596-610.

备注/Memo

备注/Memo:
收稿日期: 2021-09-18  修回日期: 2021-12-09 第一作者: 王富强, 男, 1978 年生, 高级工程师 通讯作者: 张瑞雪, 女, 1992 年生, 博士, Email: zhangrx@ stumail. neu. edu. cn
更新日期/Last Update: 2023-05-06