[1]于天骄,宋 伟,李琳,等.复合导热硅橡胶研究进展[J].中国材料进展,2024,43(04):020-29.
 YU Tianjiao,SONG Wei,LI Lin,et al.Research progress of composite thermally conductive silicone rubber[J].MATERIALS CHINA,2024,43(04):020-29.
点击复制

复合导热硅橡胶研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第04期
页码:
020-29
栏目:
出版日期:
2024-04-29

文章信息/Info

Title:
Research progress of composite thermally conductive silicone rubber
作者:
于天骄1宋 伟1李琳2宋文宏1孙 宇1
哈尔滨理工大学 工程电介质及其应用教育部重点实验室,黑龙江省 哈尔滨市 150000
Author(s):
YU Tianjiao1SONG Wei1LI Lin2SONG Wenhong1SUN Yu1
1. Key Laboratory of Engineering Dielectrics and Their Applications, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang 150000 2. State Grid Heilongjiang Electric Power Company Limited Electric Power Research Institute, Harbin, Heilongjiang 150000
关键词:
SR导热机理无机填料制备方式填料取向
Keywords:
SR the thermal conductivity mechanism Inorganic fillers preparation method filler orientation
分类号:
TM215.2
文献标志码:
A
摘要:
随着电气行业的飞速发展,各类电气设备、电子器件功率愈发增高,对绝缘散热材料的需求也随之增加,硅橡胶(SR)具有优越的绝缘性及稳定性,将高导热无机填料引入到SR体系中提升其导热性,成为导热绝缘方向的研究热点。本文概述了填充型高分子复合物的导热机理及相应的导热函数模型,结合函数模型综述了无机填料的形状、尺寸及界面热阻对填充型导热SR导热性的影响。无机填料按照一定取向排列能够使SR在较少的填充下获得较高的导热性。导热SR的不同制备方式影响无机填料在SR中的状态,根据固体SR和液体SR的自身特性,我们总结了能够使无机填料按一定取向排列在SR中的制备方法。最后,我们归纳了导热SR的研究瓶颈并对其未来的研究方向进行展望。
Abstract:
With the development of the electrical industry, the power of various electrical equipment and electronic devices is increasing. The demand for insulating materials to dissipate heat has also increased. SR has excellent insulation and stability. Adding high thermal conductivity inorganic fillers to the SR system to improve its thermal conductivity has become a research hotspot in the direction of thermal conductivity of insulation. This paper summarizes the thermal conduction mechanism of the filled composites and the corresponding thermal conduction function model. We combined the functional model to review the influence of the shape, size and interfacial thermal resistance of inorganic fillers on the thermal conductivity of SR. The oriented arrangement of inorganic fillers can make SR obtain higher thermal conductivity with less inorganic fillers. Different preparation methods of thermally conductive SR can affect the filling state of inorganic fillers in SR. According to the characteristics of solid SR and liquid SR, we summarize the preparation methods that can make inorganic fillers arranged in SR according to a certain orientation. Finally, we summarize the research bottlenecks of thermally conductive SR and prospect its future research directions.

参考文献/References:

[1] SALAME C, HABCHI R. Silicon MOSFET devices electrical parameters evolution at high temperatures, Microelectronics International [J], 2008, 25(1): 21-24.
[2] CHENG Y, FU G, JIANG M, et al. Investigation on Intermittent Life Testing Program for IGBT, Journal of Power Electronics [J], 2017, 17(3): 811-819.
[3] LI J H. Research status and development trend of ceramifiable silicone rubber composites: a brief review, Materials Research Express[J], 2022 9(1): 1-15.
[4] XUE Y, WANG H S, LI X F, et al. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing, Composites Part A: Applied Science and Manufacturing[J], 2021, 144(1):106336-106344.
[5] SHI Z H, L1 Y, YAN L, et al. Graphene: Prepared by High Speed Shearing-assisted Exfoliation and Application in Thermal Conductive Silicone, Journal of Inorganic Materials [J], 2017, 32(9): 955-960.
[6] CHENG J P, LIU T, ZHANG J, et al. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites, Applied Physics A [J], 2014, 117(4): 1985-1992.
[7] 王蕴, 周文英, 曹丹, 等. 复合材料学报[J], 2021, 39(5): 1-11.
WANG Y, ZHOU W Y, CAO D, et al. Journal of Composite Materials [J], 2021, 39(5): 1-11.
[8] GU J, RUAN K. Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics, Nanomicro Letters[J], 2021, 13(1): 110-9.
[9] 周文英, 张亚婷. 合成树脂及塑料[J], 2010, 27(2): 69-84.
ZHOU W Y, ZHANG Y T, Synthetic Resins and Plastics [J], 2010, 27(2): 69-84.
[10] ZHANG H, ZHANG X W, FANG Z, et al. Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review, Journal of Composites Science[J], 2020, 4(4): 1-46.
[11] 周文英, 齐暑华, 涂春潮, 等. 合成橡胶工业[J], 2006, 29(6): 462-465.
ZHOU W Y, QI L H, TU C C, et al. Synthetic Rubber Industry[J], 2006, 29(6): 462-465.
[12] HAMILTON R L,CROSSER O K. THERMAL TWO-COM CONDUCTIVITY OF HETEROGENEOUS PONENT SYSTEMS, Industrial & Engineering Chemistry Fundamentals [J], 1962, 1(3): 187-191.
[13] BIRD R B, STEWART W E, Light foot E N. Transport phenomena[M]. America: 2nd edition. John Wiley & Sons, 2001: 281.
[14] ACARI Y, UEDA A, NACAL S. Thermal Conductivity of a Polyethylene Filled with Disoriented Short-Cut Carbon Fibers, Journal of Applied Polymer Science[J], 1991, 43: 1117-1124.
[15] ACARI Y, UEDA A, NACAL S. Thermal Conductivities of Composites in Several Types of Dispersion Systems, Journal of Applied Polymer Science[J], 1991, 42: 1665-1669.
[16] TURTON, RICHARD, Physics of Non-crystal Solid[M], Beijing: Peking University Press 1988:32-39.
[17] VYSOTSKY V V, ROLDUGHIN V I. Aggregate structure and percolation properties of metal-filled polymer films, Colloid Surf. A [J], 1999, 160(2):171-180.
[18] SHEN M X, CUI Y X, HE J, et al. Thermal conductivity model of filled polymer composites , International Journal of Minerals, Metallurgy, and Materials [J], 2011, 18(5): 623-631.
[19] 李宾,刘妍,孙斌,等.化工学报[J], 2009, 60(10): 2650-2655.
LI B, LIU Y, SUN B, et al.Chinese Journal of Chemical Engineering [J], 2009, 60(10): 2650-2655.
[20] 张先伟, 范宏. 化学反应工程与工艺[J], 2015, 31(6): 566-575.
ZHANG X W, FAN H. Chemical Reaction Engineering and Technology [J], 2015, 31(6): 566-575.
[21] XU W X, LIANG X G, XU X H, et al. Acta Physica Sinica[J], 2020, 69(19):196601-196608.
[22] WANG H H, WU X J, QIN X, et al. Ultraflexible and Mechanically Strong Polymer/Polyaniline Conductive Interpenetrating Nanocomposite via In Situ Polymerization of Vinyl Monomer, Polymers (Basel)[J], 2021, 13(13): 1-12.
[23] SONG J, WU L, ZHANG Y. Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework, Polymer Bulletin[J], 2019, 77(4): 2139-2153.
[24] SONG Q, ZHU W, DENG Y, et al. Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride) / boron nitride /graphite nanoplatelets insulation films with high breakdown strength and reliability, Composites Science and Technology[J], 2018, 168(38):1-22.
[25] LIU C, WU W, DRUMMER D, et al. ZnO nanowires decorated-Al2O3 hybrids for improving the thermal conductivity of polymer composites, Journal of Materials Chemistry C [J], 2020, 8(16): 5380-5388.
[26] 刘旺冠, 蒋兴华, 郭建华. 材料工程[J], 2022, 50(2): 127-134.
LIU W G, JIANG X H, GUO J H. Materials Engineering [J], 2022, 50(2): 127-134.
[27] ZHANG Y L, ZANG C G, JIAO Q J. Electrical and thermal properties of silicone rubber composites filled with Cu-coated carbon fibres and functional carbon nanotubes, Plastics, Rubber and Composites [J], 2019, 48(8): 327-337.
[28] SONG J N, PENG Z, ZHANG Y. Enhancement of Thermal Conductivity and Mechanical Properties of Silicone Rubber Composites by Using Acrylate Grafted Siloxane Copolymers, Chemical Engineering Journal[J], 2020, 391(19):1-30.
[29] WANG X L, XIA Z, ZHAO C, et al. Microstructured Flexible Capacitive Sensor with High Sensitivity Based on Carbon Fiber-Filled Conductive Silicon Rubber, Sensors and Actuators A: Physical [J], 2020, 312(20):1-33.
[30] LI C B, LIU B, GAO Z, et al. Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties, Journal of Applied Polymer Science [J],2018, 135(27): 46454-46482.
[31] 伍垚屹, 陈松, 张雪娇, 等. 复合材料学报 [J], 2021, 39(5): 1-15.
WU Y Y, CHEN S, ZHANG X J, et al. Journal of Composite Materials [J], 2021, 39(5): 1-15.
[32] SONG J N, ZHANG Y. Vertically Aligned Silicon Carbide Nanowires/Reduced Graphene Oxide Networks for Enhancing the Thermal Conductivity of Silicone Rubber Composites, Composites Part A: Applied Science and Manufacturing [J],2020, 133(20):1-33.
[33] HUANG H, BI H, ZHOU M, et al. A three-dimensional elastic macroscopic graphene network for thermal management application, J Mater Chem A [J], 2014, 2(43): 18215-18228.
[34] XUE Y, WANG H, LI X, et al. Synergy boost thermal conductivity through the design of vertically aligned 3D boron nitride and graphene hybrids in silicone rubber under low loading, Materials Letters [J], 2020, 281: 128596-128600.
[35] NIU H, REN Y, GUO H, et al. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications, Composites Communications [J], 2020, 22:100430-100442.
[36] 周文英, 齐暑华, 涂春潮, 等. 材料工程[J], 2006, (8): 15-19.
ZHOU W Y, QI L H, TU C C, et al. Materials Engineering [J], 2006, (8): 15-19.
[37] XUE Y, LI X F, WANG H, et al. Thermal conductivity improvement in electrically insulating silicone rubber composites by the construction of hybrid three-dimensional filler networks with boron nitride and carbon nanotubes, Journal of Applied Polymer Science [J], 2019, 136(2): 46929-46936.
[38] NAZIR M T, PHUNG B T, YEOH G H, et al. Enhanced dielectric and thermal performance by fabricating coalesced network of alumina trihydrate/boron nitride in silicone rubber for electrical insulation, Bulletin of Materials Science [J], 2020, 43(1): 220-225.
[39] SUI X Z, ZHOU W, DONG L, et al. A novel fiber- reinforced silicone rubber composite with Al particles for enhanced dielectric and thermal properties, Advances in Polymer Technology [J], 2018, 37(5): 1507-1516.
[40] MOHAMMAD NEJAD S, SRIVASTAVA R, BELLUSSI F M, et al. Nanoscale thermal properties of carbon nanotubes/epoxy composites by atomistic simulations, International Journal of Thermal Sciences [J], 2021, 159: 106588-106599.
[41] XU Y, GAO Q, LIANG H, et al. Effects of functional graphene oxide on the properties of phenyl silicone rubber composites, Polymer Testing [J], 2016, 54: 168-175.
[42] WANG J, ZHAO D, ZOU X, et al. The exfoliation and functionalization of boron nitride nanosheets and their utilization in silicone composites with improved thermal conductivity, Journal of Materials Science: Materials in Electronics [J], 2017, 28(17): 12984-12994.
[43] LIANG W J, GE X, GE J, et al. Reduced Graphene Oxide Embedded with MQ Silicone Resin Nano-Aggregates for Silicone Rubber Composites with Enhanced Thermal Conductivity and Mechanical Performance, Polymers (Basel) [J], 2018, 10(11): 1254-1267.
[44] SHI Y Y, MA W, WU L, et al. Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites, Journal of Applied Polymer Science [J], 2019, 136(37): 1-7.
[45] YUAN C, DUAN B, LI L, et al. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets, ACS Appl Mater Interfaces [J], 2015, 7(23): 13000-13006.
[46] SONG J N, CHEN C B, ZHANG Y. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films, Composites Part A: Applied Science and Manufacturing [J] , 2018,(105):1-8.
[47] MA H Q, GAO B, WANG M, et al. Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites, Polymers for Advanced Technologies [J], 2021, 32(11): 4318-25.
[48] XUE Y, LI X, WANG H, et al. Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites, Materials & Design [J], 2019, 165: 107580-107608.
[49] SONG S Q, WANG J Y, LIU C, et al. A Facile Route to Fabricate Thermally Conductive and Electrically Insulating Polymer Composites with 3D Interconnected Graphene at An Ultralow Filler Loading, Nanoscale [J],2019, 11(32):1-33.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(51607048,51541702);国网黑龙江省电力有限公司电力科学研究院资助项目(SGHLDKOOPJJS1900143);黑龙江省自然科学基金资助项目(QC2015063) 第一作者:于天骄,男,1993年生,硕士研究生第一作者:于天骄,男,1993年生,硕士研究生
更新日期/Last Update: 2024-02-27