[1]杜大帆,董安平,祝国梁,等.静磁场辅助金属增材制造技术研究进展[J].中国材料进展,2024,43(04):040-49.[doi:10.7502/j.issn.1674-3962. 202111025]
 DU Dafan,DONG Anping,ZHU Guoliang,et al.Progress in Research of the Assistance of Static Magnetic Field on Metal Additive Manufacturing[J].MATERIALS CHINA,2024,43(04):040-49.[doi:10.7502/j.issn.1674-3962. 202111025]
点击复制

静磁场辅助金属增材制造技术研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第04期
页码:
040-49
栏目:
出版日期:
2024-04-29

文章信息/Info

Title:
Progress in Research of the Assistance of Static Magnetic Field on Metal Additive Manufacturing
作者:
杜大帆1董安平1祝国梁12孙宝德1
1. 上海交通大学材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室,上海200240 2. 中国航发上海商用航空发动机制造有限责任公司,上海 201306
Author(s):
DU Dafan DONG Anping ZHU Guoliang LEI Liming SUN Baode
1.Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. AECC Shanghai Commercial Aircraft Engine Manufacturing Co., Ltd., Shanghai 201306, China
关键词:
金属材料增材制造静磁场组织力学性能
Keywords:
metal additive manufacturing static magnetic field microstructuremechanical property
分类号:
TG14
DOI:
10.7502/j.issn.1674-3962. 202111025
文献标志码:
A
摘要:
增材制造作为一种新型的材料加工技术,具有制造周期短、材料利用率高和可制备结构复杂零件等优势,可以为定制形状复杂的产品开辟新途径,目前该技术在装备、材料、工艺、标准等方面都呈现迅猛发展之势,尤其在航空航天等高端制造领域展示出了极大的应用前景。然而,对金属材料增材制造的组织、缺陷演化机理尚不明确,极大地制约了增材制造技术的大规模应用。外加物理能场作为外界辅助手段可以直接对金属材料制备过程的物理变化和化学反应过程产生影响,因而被用来控制其变化或反应过程。在金属增材制造过程施加外部磁场,可以影响其微熔池冶金过程、微观组织和力学性能。叙述了静磁场对金属凝固过程影响的基本效应,并着重介绍了静磁场对3种具有代表性的增材制造方法,即:激光定向能量沉积、粉末床激光熔融、和电弧送丝增材制造方法的成形过程、组织和性能的影响机制,从材料、方法和应用的角度综述了静磁场辅助下的金属增材制造领域的研究进展。此外,指出了静磁场辅助金属增材制造技术面对的挑战,并讨论了未来发展趋势。
Abstract:
As a new type of material processing technology, additive manufacturing has many advantages, such as short manufacturing cycle, high material utilization rate and ability of complex products structure processing, etc. This technology performs a rapid development trend in equipment, materials, processes, standards, etc., especially in high-end manufacturing fields such as aerospace, showing great application prospects. However, the mechanism of microstructure and defect evolution during metallic additive manufacturing is still unclear, which greatly restricts the large-scale application of additive manufacturing technology. As an external auxiliary means, the external physical energy field can directly affect the physical change and chemical reaction process of the metal material preparation process. The application of a static external magnetic field in the additive manufacturing process can affect the solidification process of the microscale melt pool, microstructure and mechanical properties. The basic effects of static magnetic field on the metallic solidification, the microstructure and mechanical properties during additive manufacturing were described. The research progress in the field of static magnetic field-assisted additive manufacturing was reviewed from the perspective of materials, methods and applications. In addition, the challenges faced by static magnetic field assisted additive manufacturing were pointed out and the future development trend was discussed

参考文献/References:

[1] MARCEL G. ISIJ Inter[J], 1990, 30(1): 1-7.
[2] ZI B T, LIU W J, YAO K F, et al. Tianjin Metallurgy[J], 2002, 5: 5-10.
訾炳涛, 刘文今, 姚可夫,等. 天津冶金[J], 2002, 5: 5-10.
[3] REN Z M. Materials China[J], 2010, 29(6): 40-49.
任忠鸣. 中国材料进展[J], 2010, 29(6): 40-49.
[4] LI X, REN Z M, WANG H, et al. The Chinese Journal of Nonferrous Metals[J], 2006, 16(3): 476-481.
李喜, 任忠鸣, 王晖,等. 中国有色金属学报[J], 2006, 16(3): 476-481.
[5] LI X, REN Z M, FAUTRELLE Y. Journal of Crystal Growth[J], 2008, 310: 3488-3497.
[6] LI X, FAUTRELLE Y, GAGNOUD A, et al. Metallurgical and Materials Transactions A[J], 2016, 47: 1180-1197.
[7] MIKELSON A E, KARKLIN Y K. Journal of Crystal Growth[J], 1981, 52(2): 524-529.
[8] YASUDA H, OHNAKA I, YAMAMOTO Y, et al. Materials Transactions[J], 2003, 44(12): 2550-2554.
[9] HAN Y, BAN C Y, GUO S J, et al. Materials Letters[J], 2007, 61(4-5): 983-986.
[10] WANG Q, WANG Z Y, LIU T, et al. Science in China Series E-Technological Sciences[J], 2009, 52(4): 857-863.
[11] de RANGO P, LEES M, LEJAY P, et al. Nature[J], 1991, 349(6312): 770-772.
[12] WILLS B A. Mineral Process Technology [M]. 6th Ed. London: Butterworth and Heinmann, 1997.
[13] WANG Q, LIU T, GAO A, et al. Scripta Materials[J], 2007, 56: 1087-1090.
[14] LIU T, WANG Q, GAO A, et al. Scripta Materials[J], 2007, 57: 992-995.
[15] LI X, FAUTRELLE Y, REN Z M, et al. Acta Materials[J], 2009, 57: 1689-1701.
[16] SHIMOTOMAI M, MARUTA K. Scripta Materials[J], 2000, 42(5): 499-503.
[17] WANG Q, LOU C S, LIU T, et al. Journal of Physics D-Applied Physics[J], 2009, 42(2): 025001.
[18] ZHENG T X, ZHONG Y B, DONG L C, et al. Metallurgical and Materials Transactions A[J], 2018, 49: 1981-1985.
[19] BALTARETU F, WANG J, LETOUT S, et al. Magnetohydrodynamics[J], 2015, 51: 45-55.
[20] LI X, FAUTRELLE Y, REN Z M. Acta Materials[J]. 2007, 55: 1377-1386.
[21] LI X, FAUTRELLE Y, REN Z M. Acta Materials[J]. 2007, 55: 3803-3813.
[22] DU D F, HOU L, GAGNOUD A, et al. Journal of Alloys and Compounds[J], 2014, 588: 190-198.
[23] DU D F, FAUTRELLE Y, DONG A P, et al. Materials Characterization[J], 2018, 141: 423-432.
[24] CHANDRASEKHAR S. Philosophical Magazine[J], 1954, 45(370): 1177-1191.
[25] UTECH H P, FLEMINGS M C. Journal of Applied Physics[J], 1966, 37(5): 2021-2024.
[26] OREPER G M, SZEKELY J. Journal of Crystal Growth[J], 1984, 67(3): 405-419.
[27] GARANDET J P, ALBOUSSIERE T, MOREAU R. International Journal of Heat and Mass Transfer[J], 1992, 35(4): 741-748.
[28] ALBOUSSIERE T, MOREAU R, CAMEL D. Comptes Rendus De L Academie Des Sciences Serie II Fascicule C-Chimie [J], 1991, 313(7): 749-755.
[29] BEN HADID H, HENRY D. Journal of Fluid Mechanics[J], 1997, 333: 57-83.
[30] KINJI H, NOBUYUKI I, TOSHIHIKO S, et al. Journal of Crystal Growth[J], 2001, 230:100-107.
[31] KAKIMOTO K. Journal of Crystal Growth[J], 2000, 212: 429-437.
[32] SHEN. Z, ZHONG Y B, WANG H, et al. Journal of Crystal Growth[J], 2015, 432: 116-122.
[33] SHUAI S S, LIN X, SHAO W Q, et al. Acta Metallurgica Sinica[J], 2018, 54(6): 918-926.
帅三三,林鑫,肖武泉,等. 金属学报[J], 2018, 54(6): 918-926.
[34] LIU X Q, YU J B, SHUAI S S, et al. Metallurgical and Materials Transactions B [J], 2018, 4: 3211-3219.
[35] NIE J W, CHEN C Y, SHUAI S S, et al. Journal of Thermal Spray Technology[J], 2020, 29:1410-1423.
[36] DU D F, DONG A P, SHU D, et al. Metallurgical and Materials Transactions A[J], 2020, 51: 3354-3359.
[37] WANG J, WANG Y, SHI J, et al. Effect of External Magnetic Field on the Microstructure of 316L Stainless Steel Fabricated by Directed Energy Deposition[C]// Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition. Volume 2B: Advanced Manufacturing. Salt Lake City, Utah, USA: ASME, 2019.
[38] SEIDEL A, DEGENER L, SCHNEIDER J, et al. Superalloys[M]. Switzerland: Springer, 2020.
[39] FILIMONOV A M, ROGOZIN O A, DUBININ O N, et al. Materials[J], 2021, 14(18): 5190-5207.
[40] GE H H, FANG H, ZHANG C W, et al. Metallurgical and Materials Transactions A[J], 2022, 53: 370-376.
[41] KAO A, GAN T, TONRY C, et al. Philosophical Transactions of the Royal Society A[J], 2020, 378: 20190249.
[42] KANG N, YUAN H, CODDET P, et al. Materials Science Engineering C[J], 2017, 70(1): 405-407.
[43] DU D F, HALEY J C, DONG A P, et al. Materials & Design[J], 2019, 181: 107923.
[44] CHEN L W, LI H, LIU S, et al. AIP Advances[J], 2019, 9: 045012.
[45] WANG L, YAN W T. Physical Review Applied[J], 2021, 15(6): 0640051.
[46] SARAH J W, BENJAMIN G, NIRANJAN P, et al. Journal of Micro and Nano-Manufacturing[J], 2020, 4(8): 041016.
[47] KARLEN E, MIRONETS S, GIULIETTI D, et al. Powered Removal for Element Formed by Powder Bed Fusion Additive Manufacturing Processes: US Pat., 10259045 [P]. 2019-04-16.
[48] SREENATHBABU A, KARUNAKARAN K P, AMARNATH C. Rapid Prototyping Journal[J], 1995, 11(4): 235-248.
[49] LI Y, WU C S, WANG L, et al. Journal of Materials Processing Technology[J], 2016, 229: 207-215.
[50] WU C S, YANG F Z, GAO J Q. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture[J], 2016, 230(1): 188-193.
[51] SHOICHI M, YUKIO M, KOKI T, et al. Science and Technology of Welding & Joining[J], 2013, 18(1): 38-44.
[52] LIM Y C, YU X, CHO J H, et al. Science and Technology of Welding & Joining[J], 2010, 15(7): 583-589.
[53] YIN X, GOU J, ZHANG J, et al. Journal of Physics D: Applied Physics[J], 2012, 45(45): 285203.
[54] ZHOU X M, TIAN Q H, DU Y X, et al. Chinese Journal of Mechanical Engineering[J], 2018, 54(2): 84-96.
周祥曼, 田启华, 杜义贤,等.机械工程学报[J], 2018, 54(2): 84-96.
[55] ZHOU X M, TIAN Q H, DU Y X, et al. Chinese Journal of Mechanical Engineering[J], 2018, 54(12): 193-206.
周祥曼, 田启华, 杜义贤,等. 机械工程学报[J], 2018, 54(12): 193-206.
[56] ZHOU X M, ZHANG H O, WANG G L, et al. International Solid Freeform Fabrication Symposium[J], 2015, 7: 156-170.
[57] WANG Y F, CHEN X Z, SHEN Q K, et al. Journal of Manufacturing Processes[J], 2021, 64: 10-19.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(51901135, 51771118, 52071205, 51821001) 第一作者:杜大帆,男,1987年生,助理教授收稿日期:2021-12-07 修回日期:2022-03-11基金项目:国家自然科学基金资助项目(51901135, 51771118, 52071205, 51821001)第一作者:杜大帆,男,1987年生,助理教授 通讯作者:董安平,男,1977年生,研究员,博士生导师,Email: apdong@sjtu.edu.cn
更新日期/Last Update: 2024-03-28