[1]刘艳明,贾新碌,张依偲,等.钛及钛铝合金的高温氧化行为与防护[J].中国材料进展,2023,42(09):699-721.[doi:10.7502/j.issn.1674-3962.202204007]
 LIU Yanming,JIA Xinlu,ZHANG Yicai,et al.High Temperature Oxidation Behaviors and Protection of Ti-Based and TiAl-Based Alloys[J].MATERIALS CHINA,2023,42(09):699-721.[doi:10.7502/j.issn.1674-3962.202204007]
点击复制

钛及钛铝合金的高温氧化行为与防护()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第09期
页码:
699-721
栏目:
出版日期:
2023-09-30

文章信息/Info

Title:
High Temperature Oxidation Behaviors and Protection of Ti-Based and TiAl-Based Alloys
文章编号:
1674-3962(2023)09-0699-23
作者:
刘艳明12贾新碌12张依偲12赵兴兴12汪欣3
1. 西安石油大学材料科学与工程学院,陕西 西安 710065 2. 西安市高性能油气田材料重点实验室,陕西 西安 710065 3. 西北有色金属研究院,陕西 西安 710016
Author(s):
LIU Yanming12 JIA Xinlu12 ZHANG Yicai12 ZHAO Xingxing12 WANG Xin3
1. College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China 2. Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, Xi’an 710065, China 3. Northwest Institute for Non-Ferrous Metal Research, Xi’an 710016, China
关键词:
钛合金高温氧化合金化高温防护涂层失效机理
Keywords:
titanium alloys high temperature oxidation alloying high temperature protection coatings failure mechanisms
分类号:
TG146.23; TG178
DOI:
10.7502/j.issn.1674-3962.202204007
文献标志码:
A
摘要:
钛及钛铝合金在航空航天领域应用广泛,但抗高温氧化性能不足是制约其发展的主要原因之一。基于几种典型钛合金(工业纯钛、近α-Ti合金、α+β钛合金、β钛合金)和钛铝合金(γ-TiAl、Ti3Al)的高温氧化行为、氧化特点及失效机制,回顾了改善钛及钛铝合金抗高温氧化性能的主要途径,即合金化及表面改性。合金化需优化合金成分及含量,对钛及钛铝合金的抗高温氧化性能改善有限。表面改性包括涂覆高温防护涂层、表面合金化及表面强化,介绍了钛及钛铝合金表面9种防护涂层的发展现状,即Al涂层、Al-X涂层、Ti-Al-X涂层、MCrAlY涂层、准晶涂层、高熵合金涂层、惰性氧化物陶瓷涂层、搪瓷涂层及氮化物陶瓷涂层,总结了这些涂层的制备方法、高温防护机理、改性手段、失效机制及应用局限。此外,介绍了4种表面合金化技术(热扩散、离子注入、预氧化及激光表面合金化)及表面强化技术在钛及钛铝合金高温防护中的应用现状。现阶段,结合计算机模拟、机器学习等先进手段,设计制备新型高温钛合金结构材料,同时设计和发展具有优异综合性能的高温防护涂层及相应的高效制备方法,是促进钛及钛铝合金高温应用的发展方向。
Abstract:
Titanium and titanium aluminides alloys have been widely used in the aerospace industry, but the lack of high temperature oxidation resistance is one of the main reasons that restrict their development. Based on the high temperature oxidation behavior, oxidation characteristics and failure mechanisms of several typical Ti-based alloys (industrial pure titanium, near αTi, α+β-Ti, β-Ti) and TiAl-based alloys (γ-TiAl, Ti3Al), the main ways (i.e,alloying and surface modification) to improve their high temperature oxidation resistance are reviewed. Optimizing the composition and content of the alloy element is necessary for alloying, which has limited effect on improving the high temperature oxidation resistance of Ti-based alloys and TiAl-based alloys. Surface modification includes applying high temperature protective coating, surface alloying and surface strengthening. Here, the development status of the nine typical high temperature protective coating systems for the Ti-based and TiAl-based alloys is reviewed,including Al coatings, Al-X coatings, Ti-Al-X coatings, MCrAlY coatings, quasicrystalline coatings, high-entropy alloy coatings, inert oxide ceramic coatings, enamel coating and nitride ceramic coatings. Furthermore, their processing methods, high temperature protection mechanisms, modification methods, failure mechanisms and application limitations are summarized. In addition, the application status of surface alloying technologies namely thermal diffusion, ion implantation, pre-oxidation and laser surface alloying as well as the surface strengthening technology in the high temperature protection of Ti-based and TiAl-based alloys are introduced. At this stage, advanced methods such as computer simulation and machine learning can be combined to design and prepare new high-temperature Ti-based structural materials. At the same time, developing the high-temperature protective coatings with excellent comprehensive properties and the corresponding efficient preparation methods is the key to promote the high-temperature application of Ti-based and TiAl-based alloys.

参考文献/References:

\[1\]刘世锋,宋玺,薛彤,等.航空材料学报\[J\],2020,40(3):77-94. LIU S F,SONG X,XUE T,et al. Journal of Aeronautical Materials\[J\],2020,40(3):77-94. \[2\]WANG S X, LIU X, YIN X L, et al. Surface and Coatings Technology\[J\], 2020, 404: 126473. \[3\]GUO W, WANG H, PENG P, et al. Corrosion Science\[J\], 2020, 170: 108655. \[4\]PAN Y, LU X, HUI T L, et al. Journal of Materials Science\[J\], 2021, 56(1): 815-827. \[5\]WEI D B, ZHANG P Z, YAO Z J, et al. Corrosion Science\[J\], 2013, 66: 43-50. \[6\]DAI J J, ZHANG N L, WANG A M, et al. Journal of Alloys and Compounds\[J\], 2018, 765: 46-57. \[7\]李旭, 彭小燕, 段雨露, 等. 中国有色金属学报\[J\], 2013, 23(8): 2190-2199. LI X, PENG X Y, DUAN Y L, et al. Chinese Journal of Nonferrous Metals\[J\], 2013, 23(8): 2190-2199. \[8\]刘艳明,赵兴兴,汪欣,等. 稀有金属材料与工程\[J\], 2022, 51(4): 1332-1340. LIU Y M, ZHAO X X, WANG X, et al. Rare Metal Materials and Engineering\[J\], 2022, 51(4): 1332-1340. \[9\]DAI J J, ZHU J Y, CHEN C Z, et al. Journal of Alloys and Compounds\[J\], 2016, 685: 784-798. \[10\]GEMELLI E, CAMARGO N H A. Materia\[J\], 2007, 12(3): 525-531. \[11\]向午渊, 江海涛, 田世伟. 金属功能材料\[J\], 2020, 27(3): 33-39. XIANG W Y, JIANG H T, TIAN S W. Metallic Functional Materials\[J\], 2020, 27(3): 33-39. \[12\]黄德明. 钢铁钒钛\[J\], 2010, 31(1): 11-16. HUANG D M. Iron Steel Vanadium Titanium\[J\], 2010, 31(1): 11-16. \[13\]WANG X, LI S Q, LIU J N. Materials Science Forum\[J\], 2016, 849: 347-352. \[14\]崔文芳, 魏海荣, 罗国珍, 等. 稀有金属材料与工程\[J\], 1997, 2: 31-35. CUI W F, WEI H R, LUO G Z, et al. Rare Metal Materials and Engineering\[J\], 1997, 2: 31-35. \[15\]郭建忠,刘小花,刘娣,等. 世界有色金属\[J\], 2019, 18: 1-3. GUO J Z, LIU X H, LIU D, et al. Word Nonferrous Metals\[J\], 2019, 18: 1-3. \[16\]贾新云, 刘培英, 陶冶. 材料工程\[J\], 2003, 6: 18-22. JIA X Y, LIU P Y, TAO Y. Journal of Materials Engineering\[J\], 2003, 6: 18-22. \[17\]汤海芳, 赵永庆, 洪权, 等. 稀有金属材料与工程\[J\], 2012, 41(7): 1226-1230. TANG H F, ZHAO Y Q, HONG Q, et al. Rare Metal Materials and Engineering\[J\], 2012, 41(7): 1226-1230. \[18\]周红伟, 何宜柱, 张文学, 等. 材料研究学报\[J\], 2011, 25(3): 295-302. ZHOU H W, HE Y Z, ZHANG W X, et al. Chinese Journal of Materials Research\[J\], 2011, 25(3): 295-302. \[19\]杨佩, 康聪, 李维. 湖南有色金属\[J\], 2020, 36(1): 45-47+60. YANG P, KANG C, LI W. Hunan Nonferrous Metals\[J\], 2020, 36(1): 45-47+60. \[20\]GULERYUZ H, CIMENOGLU H. Journal of Alloys and Compounds\[J\], 2009, 472(1): 241-246. \[21\]DONG E, YU W, CAI Q, et al. Oxidation of Metals\[J\], 2017, 88(5/6): 719-732. \[22\]陈永楠, 杨雯清, 杨泽慧, 等. 稀有金属材料与工程\[J\], 2019, 48(11): 3608-3614. CHEN Y N, YAN W Q, YANG Z H, et al. Rare Metal Materials and Engineering\[J\], 2019, 48(11): 3608-3614. \[23\]ZHANG Z, WANG J N, SHAO A H, et al. Science China Materials\[J\], 2020, 63(12): 2443-2455. \[24\]ZHAO Y Q, QU H L, ZHU K Y, et al. Materials Science and Engineering: A\[J\], 2001, 316(1/2): 211-216. \[25\]冉隆城, 杨峰, 刘静, 等. 材料保护\[J\], 2018, 51(5): 48-53. RAN L C, YANG F, LIU J, et al. Materials Protection\[J\], 2018, 51(5): 48-53. \[26\]李旭升, 毛小南, 辛社伟, 等. 稀有金属材料与工程\[J\], 2017, 46(8): 2313-2317. LI X S, MAO X N, XIN S W, et al. Rare Metal Materials and Engineering\[J\], 2017, 46(8): 2313-2317. \[27\]刘俊, 刘艳, 徐春梅, 等. 硅酸盐通报\[J\], 2011, 30(4): 982-987. LIU J, LIU Y, XU C M, et al. Bulletin of the Chinese Ceramic Society\[J\], 2011, 30(4): 982-987. \[28\]QIAN Y H, LI M S, LU B. Transactions of Nonferrous Metals Society of China\[J\], 2009, 19(3): 525-529. \[29\]PARK S Y, SEO D Y, KIM S W, et al. Intermetallics\[J\], 2016, 74: 8-14. \[30\]刘杰, 薛祥义, 杨劼人, 等. 稀有金属材料与工程\[J\], 2014, 43(12): 3031-3036. LIU J, XUE X Y, YANG J R, et al. Rare Metal Materials and Engineering\[J\], 2014, 43(12): 3031-3036. \[31\]WEN P C, YUAN L J, TAO R, et al. Applied Surface Science\[J\], 2022, 604: 154535. \[32\]汪欣, 李争显, 杜继红. 钛工业进展\[J\], 2017, 34(6): 1-8. WANG X, LI Z X, DU J H. Titanium Industry Progress\[J\], 2017, 34(6): 1-8. \[33\]王孟光, 陈志强, 包淑娟. 材料开发与应用\[J\], 2011, 26(6): 22-24. WANG M G, CHEN Z Q, BAO S J. Development and Application of Materials\[J\], 2011, 26(6): 22-24. \[34\]BROTZU A, FELLI F, PILONE D. Intermetallics\[J\], 2014, 54: 176-180. \[35\]JIANG H R, WANG Z L, MA W S, et al. Transactions of Nonferrous Metals Society of China\[J\], 2008, 18(3): 512-517. \[36\]MAEDA K, SUZUKI S, UEDA K, et al. Journal of Alloys and Compounds\[J\], 2019, 776: 519-528. \[37\]XU J Y, SHI Z Z, ZHANG Z B, et al. Corrosion Science\[J\], 2020, 166: 108430. \[38\]SONG Y J, FU B G, DONG T S, et al. Materials\[J\], 2020, 13(5): 1082. \[39\]李虹, 王绍青, 叶恒强. 物理学报\[J\], 2009, 58(S1): 224-229. LI H, WANG S Q, YE H Q. Acta Physica Sinica\[J\], 2009, 58(S1): 224-229. \[40\]JIANG H, HIROHASI M, LU Y, et al. Scripta Materialia\[J\], 2002, 46(9): 639-643. \[41\]ROY T K, BALASUBRAMANIAM R, GHOSH A. Metallurgical and Materials Transactions A\[J\], 1996, 27(12): 3993-4002. \[42\]ZHOU C G, VANG Y, GONG S K, et al. Acta Aeronautica et Astronautica Sinica\[J\], 2001, 22(1): 73-77. \[43\]JIANG Z H, ZHAO C Z, YU J J, et al. China Foundry\[J\], 2018, 15(1): 17-22. \[44\]NEELAM N S, BANUMATHY S, BHATTACHARJEE A, et al. Corrosion Science\[J\], 2020, 163: 108300. \[45\]PFLUMM R, DONCHEV A, MAYER S, et al. Intermetallics\[J\], 2014, 53: 45-55. \[46\]宋庆功, 董珊珊, 胡烨, 等. 材料导报\[J\], 2021, 35(2): 2057-2063. SONG Q G, DONG S S, HU Y, et al. Materials Reports\[J\], 2021, 35(2): 2057-2063. \[47\]GADDAM R, SEFER B, PEDERSON R, et al. Materials Characterization\[J\], 2015, 99: 166-174. \[48\]XU Y Q, FU Y, LI J, et al. Journal of Materials Science & Technology\[J\], 2021, 93: 147-156. \[49\]BRICE D A, SAMIMI P, GHAMARIAN I, et al. Corrosion Science\[J\], 2016, 112: 338-346. \[50\]BOEHLERT C J, COWEN C J, TAMIRISAKANDALA S, et al. Scripta Materialia\[J\], 2006, 55(5): 465-468. \[51\]王斌. 稀土添加对粉末冶金钛合金组织与性能影响研究\[D\]. 长沙: 中南大学, 2011. WANG B. Effect of Rare Earth Addition on Microstructure and Properties of Powder Metallurgy Titanium Alloy\[D\]. Changsha: Central South University, 2011. \[52\]赖旭平, 李天方, 刘瑞, 等. 材料导报\[J\], 2021, 35(S1): 374-377. LAI X P, LI T F, LIU R, et al. Materials Reports\[J\], 2021, 35(S1): 374-377. \[53\]GONG X, CHEN R R, WANG Y, et al. Frontiers in Materials\[J\], 2021, 8: 710431. \[54\]WU Y, HAGIHARA K, UMAKOSHI Y. Intermetallics\[J\], 2004, 12(5): 519-532. \[55\]LUAN J H, JIAO Z, CHEN G, et al. Journal of Alloys and Compounds\[J\], 2014, 602: 235-240. \[56\]车晋达, 姜贝贝, 王清, 等. 稀有金属材料与工程\[J\], 2018, 47(5): 1471-1477. CHE J D, JIANG B B, WANG Q, et al. Rare Metal Materials and Engineering\[J\], 2018, 47(5): 1471-1477. \[57\]王丽杰. 硅钇钽双掺杂对γTiAl基合金抗氧化性和延性的影响\[D\]. 天津: 中国民航大学, 2019. WANG L J. Effect of Double Doping on Oxidation Resistance and Ductility of γTiAlBased Alloys\[D\]. Tianjin: Civil Aviation University of China, 2019. \[58\]BHATTACHARYA S K, SAHARA R, NARUSHIMA T. Oxidation of Metals\[J\], 2020, 94(3): 205-218. \[59\]XU Y, LIANG W, MIAO Q, et al. Heat Treatment of Metals\[J\], 2013, 38(8): 21-25. \[60\]MENGIS L, OSKAY C, DONCHEV A, et al. Surface and Coatings Technology\[J\], 2021, 406: 126646. \[61\]WEI X F. Transactions of Materials and Heat Treatment\[J\], 2013, 34: 139-143. \[62\]SASAKI T, YAGI T, WATANABE T, et al. Surface and Coatings Technology\[J\], 2011, 205(13): 3900-3904. \[63\]XU Y, LIANG W, MIAO Q, et al. Surface Engineering\[J\], 2015, 31(5): 354-360. \[64\]WANG Q, WU W Y, JIANG M Y, et al. Surface and Coatings Technology\[J\], 2020, 381: 125126. \[65\]SWADZBA R, SWADABA L, MENDALA B, et al. Surface and Coatings Technology\[J\], 2020, 403: 126361. \[66\]NOURI S, RASTEGARI S, MIRDAMADI S, et al. Surface Engineering\[J\], 2015, 31(12): 930-933. \[67\]CHEN C, FENG X M, SHEN Y F. Journal of Alloys and Compounds\[J\], 2017, 701: 27-36. \[68\]HUANG J, ZHAO F, CUI X Y, et al. Applied Surface Science\[J\], 2022, 582: 152444. \[69\]ZHOU C, XU H, GONG S, et al. Surface and Coatings Technology\[J\], 2000, 132(2): 117-123. \[70\]CHEN C, ZHANG J P, DUAN C Y, et al. Journal of Alloys and Compounds\[J\], 2016, 660: 208-219. \[71\]CHEN C, FENG X M, SHEN Y F. Journal of Alloys and Compounds\[J\], 2017, 708: 639-651. \[72\]TRIVEDI S P, DAS D K. Intermetallics\[J\], 2005, 13(10): 1122-1133. \[73\]DELMAS M, UCAR M, RESSIER L, et al. Surface and Coatings Technology\[J\], 2004, 188(11): 49-54. \[74\]DELMAS M, POQUILLON D, KIHN Y, et al. Surface and Coatings Technology\[J\], 2005, 200(5): 1413-1417. \[75\]DAI J J, ZHANG F Y, WANG A M, et al. Surface and Coatings Technology\[J\], 2017, 309: 805-813. \[76\]刘洪喜, 赵艳爽, 张晓伟, 等. 光学精密工程\[J\], 2019, 27(2): 316-325. LIU H X, ZHAO Y S, ZHANG X W, et al. Optics and Precision Engineering\[J\], 2019, 27(2): 316-325. \[77\]HU X, LI F, SHI D, et al. Journal of Alloys and Compounds\[J\], 2020, 830: 154670. \[78\]LI X T, HUANG L J, JIANG S, et al. Journal of Alloys and Compounds\[J\], 2019, 807: 151679. \[79\]闫伟, 孙凤久, 刘建荣, 等. 东北大学学报(自然科学版)\[J\], 2010, 31(3): 411-414. YAN W, SUN F J, LIU J R, et al. Journal of Northeastern University (Natural Science)\[J\], 2010, 31(3): 411-414. \[80\]BRADY M P, SMIALEK J L, HUMPHREY D L. MRS Online Proceedings Library\[J\], 2011, 364: 1309. \[81\]DAI J J, LI S Y, ZHANG H X, et al. Surface and Coatings Technology\[J\], 2018, 344: 479-488. \[82\]EBACHSTAHL A, EILERS C, LASKA N, et al. Surface and Coatings Technology\[J\], 2013, 223: 24-31. \[83\]ZAMBRANO C, JENNY C, PEREIRA F, et al. Surface and Coatings Technology\[J\], 2019, 358: 114-124. \[84\]DAI J J, ZHANG H X, SUN C X, et al. Corrosion Science\[J\], 2020, 168: 108578. \[85\]LASKA N, BRAUN R, KNITTEL S. Surface and Coatings Technology\[J\], 2018, 349: 347-356. \[86\]SWADZBA R, BAUER P P. Applied Surface Science\[J\], 2021, 562: 150191. \[87\]周鹏, 张平则, 魏东博, 等. 机械工程材料\[J\], 2014, 38(2): 63-67. ZHOU P, ZHANG P Z, WEI D B, et al. Materials for Mechanical Engineering\[J\], 2014, 38(2): 63-67. \[88\]TIAN S W, ZHANG Y F, HE A R, et al. Surface and Coatings Technology\[J\], 2022, 444: 128687. \[89\]GONG X, CHEN R R, YANG Y H, et al. Applied Surface Science\[J\], 2018, 431: 81-92. \[90\]DING Z, MIAO Q, LIANG W, et al. Materials Research Express\[J\], 2018, 5(6): 066524. \[91\]GONG X, CHEN R R, WANG Q, et al. Journal of Alloys and Compounds\[J\], 2017, 729: 679-687. \[92\]SHI J, LI H Q, WAN M Q, et al. Corrosion Science\[J\], 2016, 102: 200-208. \[93\]YANG Y F, XIAO Q, REN P, et al. Corrosion Science\[J\], 2021, 187: 109510. \[94\]MOSKALEWICZ T, DUBIEL B, WENDLER B. Materials Characterization\[J\], 2013, 83: 161-169. \[95\]KONG J, ZHOU C, GONG S, et al. Surface and Coatings Technology\[J\], 2003, 165(3): 281-285. \[96\]FU Y, KANG N, LIAO H, et al. Intermetallics\[J\], 2017, 86: 51-58. \[97\]YEH J W, CHEN S K, LIN S J, et al. Advanced Engineering Materials\[J\], 2004, 6(5): 299-303. \[98\]LOU L Y, ZHANG Y, JIA Y J, et al. Surface and Coatings Technology\[J\], 2020, 392: 125697. \[99\]CUI W, LI W, CHEN W T, et al. Crystals\[J\], 2020, 10(8): 638. \[100\]HUANG C, ZHANG Y Z, SHEN J Y, et al. Surface and Coatings Technology\[J\], 2011, 206(6): 1389-1395. \[101\]ZHAO P, LI J, ZHANG Y, et al. Journal of Alloys and Compounds\[J\], 2021, 862: 158405. \[102\]ZENG X, LIU Z Y, WU G G, et al. Surface and Coatings Technology\[J\], 2021, 418: 127243. \[103\]TIAN Y, SHEN Y F, LU C Y, et al. Journal of Alloys and Compounds\[J\], 2019, 779: 456-465. \[104\]LI S, YAMAGUCHI T. Surface and Coatings Technology\[J\], 2022, 433: 128123. \[105\]SAMLOR D, BAGGETTO L, LALOO R, et al. Journal of Materials Science\[J\], 2020, 55(11): 4883-4895. \[106\]TANG Z, WANG F, WU W. Materials Science and Engineering: A\[J\], 2000, 276(1): 70-75. \[107\]JIANG Z P, YANG X, LIANG Y F, et al. Surface and Coatings Technology\[J\], 2018, 333: 187-194. \[108\]WANG P, HE Y D, ZHANG J. Materials Chemistry and Physics\[J\], 2016, 184: 1-4. \[109\]WANG P, DENG S J, HE Y D, et al. Ceramics International\[J\], 2016, 42(7): 8229-8233. \[110\]MA X X, HE Y D, WANG D R. Applied Surface Science\[J\], 2011, 257(23): 10273-10281. \[111\]YANG X, JIANG Z P, HAO G J, et al. Applied Surface Science\[J\], 2018, 455: 144-152. \[112\]ZHANG X J, GAO Y H, REN B Y, et al. Journal of Materials Science\[J\], 2010, 45(6): 1622-1628. \[113\]ZHU Y C, ZHANG Y, LI X Y, et al. Materials Transactions JIM\[J\], 2000, 41(9): 1118-1120. \[114\]WU L K, WU W Y, SONG J L, et al. Corrosion Science\[J\], 2018, 140: 388-401. \[115\]YAN H J, TAI Z F, WU L K, et al. Corrosion Communications\[J\], 2021, 3: 34-44. \[116\]XU S H, LU T T, SHEN K J, et al. Materials Chemistry and Physics\[J\], 2022, 275: 125306. \[117\]WU L K, WU J J, WU W Y, et al. Corrosion Science\[J\], 2019, 146: 18-27. \[118\]程玉贤, 王文, 朱圣龙, 等. 腐蚀科学与防护技术\[J\], 2009, 21(3): 266-268. CHENG Y X, WANG W, ZHU S L, et al. Corrosion Science and Protection Technology\[J\], 2009, 21(3): 266-268. \[119\]LI W, ZHU S, WANG C, et al. Corrosion Science\[J\], 2013, 74: 367-378. \[120\]XIAO Z, TAN F, WANG W, et al. Ceramics International\[J\], 2015, 41(1): 325-331. \[121\]WU J J, YAN H J, CAO F H, et al. Surface and Coatings Technology\[J\], 2021, 422: 127495. \[122\]WANG X, ZHU S, GU Z, et al. Journal of the European Ceramic Society\[J\], 2017, 37(3): 1013-1022. \[123\]SHEN M L, ZHU S L, CHEN M H, et al. Journal of the American Ceramic Society\[J\], 2011, 94(8): 2436-2441. \[124\]YU F, GU D, ZHENG Y, et al. Journal of Alloys and Compounds\[J\], 2017, 729: 453-462. \[125\]LIAO Y M, CHEN M H, FENG M, et al. Corrosion Science\[J\], 2021, 191: 109747. \[126\]LIAO Y M, ZHANG B, CHEN M H, et al. Corrosion Science\[J\], 2020, 167: 108526. \[127\]KRSTIC V V, NICHOLSON P S, HOAGLAND R G. Journal of the American Ceramic Society\[J\], 1981, 64(9): 499-504. \[128\]ALHAFIAN M R, CHEMIN J B, VALLE N, et al. Corrosion Science\[J\], 2022, 201: 110226. \[129\]MOSER M, MARHOFER P H, CLEMENS H. Intermetallics\[J\], 2008, 16(10): 1206-1211. \[130\]ZHANG M M, CHENG Y X, XIN L, et al. Corrosion Science\[J\], 2020, 166: 108476. \[131\]SHUGUROV A, PANIN A, KASTEROV A. Surface and Coatings Technology\[J\], 2021, 421: 127488. \[132\]ZHANG K, XIN L, LU Y, et al. Corrosion Science\[J\], 2021, 179: 109151. \[133\]ZHANG K, XIN L, MA T Y, et al. Corrosion Science\[J\], 2022, 204: 110394. \[134\]CHANG Y Y, YANG S M. Thin Solid Films\[J\], 2010, 518(21): S34-S37. \[135\]OSTROVSKAYA O, BADINI C, DEAMBROSIS S M, et al. Materials & Design\[J\], 2021, 208: 109905. \[136\]HOVSEPIAN P E, EHIASARIAN A P, BRAUN R, et al. Surface and Coatings Technology\[J\], 2010, 204(16): 2702-2708. \[137\]XU Y, SHI P P, QIU J, et al. Vacuum\[J\], 2019, 165: 148-156. \[138\]YAO T H, LIU Y, LIU B, et al. Surface and Coatings Technology\[J\], 2015, 277: 210-215. \[139\]NARITA T, IZUMI T, YATAGAI M, et al. Intermetallics\[J\], 2000, 8(4): 371-379. \[140\]TAKESHI I, TAKAYUKI Y, SHIGENARI H, et al. Intermetallics\[J\], 2005, 13(7): 694-703. \[141\]GURRAPPA I, MANOVA D, GERLACH J W, et al. Journal of Alloys and Compounds\[J\], 2006, 426(1): 375-383. \[142\]SCHTZE M, SCHUMACHER G, DETTENWANGER F, et al. Corrosion Science\[J\], 2002, 44(2): 303-318. \[143\]赵宇光, 周伟, 秦庆东,等.特种铸造及有色合金\[J\], 2004(3): 34-36+74-75. ZHAO Y G, ZHOU W, QIN Q D, et al. Special Casting & Nonferrous Alloys\[J\], 2004(3): 34-36+74-75. \[144\]SWADZ′BA R, LASKA N, BAUER P P, et al. Corrosion Science\[J\], 2020, 177: 108985. \[145\]KAWAURA H, KAWAHARA H, NISHINO K, et al. Materials Science and Engineering: A\[J\], 2002, 329-331: 589-595. \[146\]HUANG Y, PENG X, DONG Z, et al. Corrosion Science\[J\], 2018, 143: 76-83. \[147\]RAKOWSKI J M, MEIER G H, PETTIT F S, et al. Scripta Materialia\[J\], 1996, 35(12): 1417-1422. \[148\]WU L K, BAO Y T, JIANG M Y, et al. Corrosion Science\[J\], 2022, 207: 110571. \[149\]CAO J D. Applied Surface Science\[J\], 2019, 493: 729-739. \[150\]WU L J, LUO K Y, LIU Y, et al. Applied Surface Science\[J\], 2018, 431: 122-134. \[151\]HE D S, LI L H, GUO W, et al. Corrosion Science\[J\], 2021, 184: 109364. \[152\]KANJER A, LAVISSE L, OPTASANU V, et al. Surface and Coatings Technology\[J\], 2017, 326: 146-155. \[153\]YANG H, HUANG X, GUO J S, et al. Journal of Alloys and Compounds\[J\], 2022, 911: 164708.

备注/Memo

备注/Memo:
收稿日期:2022-04-06修回日期:2022-11-27 基金项目:国家自然科学基金项目(51701157,52071274);陕西省自然科学基础研究计划项目(2022JM-261);陕西省创新人才推动计划青年科技新星项目(2020KJXX-062);西安石油大学研究生创新项目(YCS21111018);陕西省 大学生创新创业训练项目(S202110705065) 第一作者:刘艳明,女,1988年生,副教授,硕士生导师 通讯作者:汪欣,男,1987年生,教授级高级工程师, 硕士生导师,Email:wangx@alum.imr.ac.cn
更新日期/Last Update: 2023-08-28