[1]张静全,李遇贤,郭子玉,等.温度及预紧载荷对氧化石墨烯无石棉垫片蠕变松弛和泄漏率的影响[J].中国材料进展,2024,43(03):252-258.[doi:10.7502/j.issn.1674-3962.202206023]
 ZHANG Jingquan,LI Yuxian,GUO Ziyu,et al.Effect of Temperature and Preload on Creep Relaxation and Leakage Rate of Graphene Oxide Non-Asbestos Gaskets[J].MATERIALS CHINA,2024,43(03):252-258.[doi:10.7502/j.issn.1674-3962.202206023]
点击复制

温度及预紧载荷对氧化石墨烯无石棉垫片蠕变松弛和泄漏率的影响()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第03期
页码:
252-258
栏目:
出版日期:
2024-03-30

文章信息/Info

Title:
Effect of Temperature and Preload on Creep Relaxation and Leakage Rate of Graphene Oxide Non-Asbestos Gaskets
文章编号:
1674-3962(2024)03-0252-07
作者:
张静全李遇贤郭子玉张杰
昆明理工大学机电工程学院,云南 昆明650500
Author(s):
ZHANG Jingquan LI Yuxian GUO Ziyu ZHANG Jie
School of Mechanical and Electrical Engineering, Kunming University of Technology, Kunming 650500,China
关键词:
氧化石墨烯无石棉垫片Burgers模型蠕变松弛泄漏率
Keywords:
graphene oxide non-asbestos gasket Burgers model creep relaxationleakage rate
分类号:
TB42;TB332
DOI:
10.7502/j.issn.1674-3962.202206023
文献标志码:
A
摘要:
垫片在高温长期使用过程中发生蠕变松弛导致垫片应力下降,从而影响密封效果。因此,采用理论模型预测垫片的蠕变松弛与确定垫片在高温环境长期使用过程中泄漏率的变化规律非常重要。通过实验测试氧化石墨烯无石棉垫片在不同温度和不同预紧载荷下的垫片应力值,并与根据Burgers模型计算出的垫片应力值进行对比。然后,通过建立泄漏率与使用时间的关系,提出氧化石墨烯无石棉垫片在不同温度和不同预紧载荷下长期使用时的泄漏率计算方法,并计算出该垫片随时间变化的泄漏率变化规律。结果表明:垫片应力的松弛量随着预紧载荷的增加而增加;随着使用时间的增加,垫片的应力松弛变得更加平缓;当预紧载荷相同的情况下温度越高垫片应力下降越明显;Burgers模型对垫片应力的预测值与实验值吻合度很好,最大误差为4.4728%;当温度一定时,氧化石墨烯无石棉垫片计算的泄漏率随着预紧载荷的增加而降低;当预紧载荷相同时,垫片的泄漏率随着温度的增加而增加,且泄漏率均小于密封等级T2的泄漏率2×10-3 mg·s-1·mm-1。研究结果为氧化石墨烯无石棉垫片在高温环境长期使用过程密封性能应用提供依据。
Abstract:
The creep relaxation of gasket during long-term use at high temperature leads to the decrease of gasket stress, which affects the sealing effect. Therefore, it is very important to use the theoretical model to predict the creep relaxation of the gasket and determine the variation law of the leakage rate of the gasket during long-term use at high temperature. The gasket stress values of graphene oxide non-asbestos gaskets at different temperatures and different preloads were tested through experiments and compared with the gasket stress values calculated by Burgers model. Then, by establishing the relationship between the leakage rate and the use time, the leakage rate calculation method for graphene oxide non-asbestos gasket under different temperatures and preloads for long-term use is proposed, and the leakage rate variation with time is calculated. The results show that the stress relaxation of gasket increases with the increase of preload. With the increase of using time, the stress relaxation of gasket becomes more gentle; when the preload load is the same, the higher the temperature, the more obvious the stress drop of the gasket; the predicted gasket stress values of Burgers model are in good agreement with the experimental values, and the maximum error is 4.4728%; when the temperature is constant, the calculated leakage rate of graphene oxide non-asbestos gasket decreases with the increase of preload; when the preload is the same, the leakage rate of gasket increases with the increase of temperature and the leakage rate is less than 2×10-3 mg·s-1·mm-1 of sealing grade T2. The results provide a basis for the sealing performance application of graphene oxide non-asbestos gasket during long-term use at high temperature.

参考文献/References:

References
[1] KIKUCHI T A, TSUJI H B, TSURUMI D C. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP[J], 2018.
[2] SATO K, SAWA T, KOBAYASHI T. Proceedings of the ASME Pressure Vessels and Piping Conference[J],2017.
[3] 蔡仁良编著. 流体密封技术原理与工程应用[M]. 北京:化学工业, 2013: 530.
CAI R L. Editor Principle and Engineering Application of Fluid Seal Technology[M]. Beijing: Chemical industry, 2013: 530.
[4] SUN Z G, GU B Q. Journal of Pressure Vessel Technology[J], 2011,134(1): 1-7.
[5] 徐浩, 王崴, 马跃, 等润滑与密封[J], 2013,38(07):57-60.
XU H WANG W, MA Y, et al. Lubrication Engineering.[J], 2013,38(07): 57-60.
[6] WASMI H, ABDULLAH M, JASSIM O. International Journal of Current Engineering and Technology[J], 2016,6: 1298-1301.
[7] HOUSARI B A, ALKELANI A A. Journal of Pressure Vessel Technology[J], 2012,134: 1-5.
[8] WILLIAMS J P, STONE A, REEDY R, et al. Journal of Pressure Vessel Technology[J], 2019,141(2): 1-11.
[9] GRINE L, and BOUZID A, 2012, “Prediction of leak rates through porous gaskets at high temperature,” ASME Pressure V essels & Piping Conference, PVP2012-78147, Toronto, Ontario, CANADA.
[10] WANG F W F, WANG H W H, MAO J M J. Journal of Materials Science[J], 2019(1): 36-61.
[11] WANG J W J, WANG X W X, XU C X C, et al. Polymer International[J], 2011(No.5): 816-822.
[12] BERKI P, KHANG D Q, MINH D Q, et al. Polymer Testing[J], 2018: 46-54.
[13] MCCOY T M A T. Current Opinion in Colloid & Interface Science[J], 2019: 98-109.
[14] BAUSMAN A, WATERLAND F, and RICE D, 2017, “An exploration of achievable tightness in ASME B16.5 standard flanges for various gasket technologies,” ASME Pressure V essels & Piping Conference, PVP2017-65420, Waikoloa, Hawaii, USA.
[15] 蔡仁良,顾伯勤,宋鹏云编著. 过程装备密封技术[M]. 北京:化学工业出版社, 2006: 259.

备注/Memo

备注/Memo:
收稿日期:2022-06-30修回日期:2022-09-07 基金项目:国家自然科学基金资助项目(51165014);云南省科技厅面上项目(2012FB130) 第一作者:张静全,男,1995年生,硕士研究生 通讯作者:李遇贤,女,1978年生,副教授,硕士生导师, Email: yuxian@kmust.edu.cn
更新日期/Last Update: 2024-02-27