[1]熊锐,萨百晟.二维Janus In2SSeTe用于光催化水分解的理论研究[J].中国材料进展,2023,42(04):296-302.[doi:10.7502/j.issn.1674-3962.202207022]
 XIONG Rui,SA Baisheng.Theoretically Investigation of Two-Dimension Janus In2SSeTe as Photocatalysts for Water Splitting[J].MATERIALS CHINA,2023,42(04):296-302.[doi:10.7502/j.issn.1674-3962.202207022]
点击复制

二维Janus In2SSeTe用于光催化水分解的理论研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第04期
页码:
296-302
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Theoretically Investigation of Two-Dimension Janus In2SSeTe as Photocatalysts for Water Splitting
文章编号:
1674-3962(2023)04-0296-07
作者:
熊锐萨百晟
福州大学材料科学与工程学院,福建 福州 350108
Author(s):
XIONG Rui SA Baisheng
School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
关键词:
第一性原理理论计算二维材料In2SSeTe光催化水分解析氢反应析氧反应
Keywords:
first-principle calculation 2D materials In2SSeTe photocatalysis water splitting hydrogen evolution reaction oxygen evolution reaction
分类号:
O643
DOI:
10.7502/j.issn.1674-3962.202207022
文献标志码:
A
摘要:
利用太阳光在光催化剂材料的帮助下进行水分解,将太阳能转化为氢能不仅可以解决环境污染问题,而且也符合国家战略发展需要。基于第一性原理理论计算,提出了2种不同构型的二维Janus In2SSeTe用于光催化水分解,分别简称为Model-I和Model-II。这2种构型的二维Janus In2SSeTe均拥有优异的晶格动力学和热动力学稳定性。其中,Model-I是一种带隙值为2.20 eV的间接带隙半导体,而Model-II是带隙值为0.64 eV的直接带隙半导体。此外,二维Janus In2SSeTe中的内建电场有助于其中光生载流子的空间分离,从而减少载流子复合,有利于材料在光催化过程中对光能的有效转化。并且,合适的带边位置以及良好的光吸收能力表明二维Janus In2SSeTe是一种潜在的可用于水分解的光催化剂。更重要的是,在光照的条件下,析氢反应和析氧反应可以在ModelI构型的二维Janus In2SSeTe表面自发发生。这些计算结果为二维Janus In2SSeTe在光催化水分解领域应用提供了理论基础。
Abstract:
With the help of photocatalyst materials, utilizing sunlight to split water and converting solar energy into hydrogen energy can not only solve the problem of environmental pollution, but also meet the needs of national strategies. Based on first-principles calculations, the present work has proposed two different configurations of two-dimension (2D) Janus In2SSeTe as photocatalysts for water splitting, named Model-I and Model-II, respectively. These two configurations of 2D Janus In2SSeTe show good lattice and thermal dynamics stability. It is found that Model-I is an indirect band gap semiconductor with a band gap value of 2.20 eV, while Model-II is a direct band gap semiconductor with a band gap value of 0.64 eV. Moreover, the intrinsic electric field in 2D Janus In2SSeTe can promote the spatial separation of photogenerated carriers to reduce carrier recombination, which is beneficial to photocatalytic applications. Furthermore, the suitable band edge positions and excellent light-harvesting ability suggest that the 2D Janus In2SSeTe is a very promising photocatalyst for water splitting. More importantly, under light radiation, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can occur spontaneously in the surface of Model-I configuration. These results will provide the theoretical foundation for the practical application of 2D Janus In2SSeTe in the field of photocatalytic water splitting.

参考文献/References:

\[1\]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Science\[J\], 2004, 306(5696): 666-669. \[2\]WANG X, MAEDA K, THOMAS A, et al. Nature Materials\[J\], 2009, 8(1): 76-80. \[3\]LI R, YU X, WEN C, et al. Chinese Journal of Structure Chemistry\[J\], 2021, 39(7): 1243-1251. \[4\]ZHU X, ZHANG T, SUN Z, et al. Advanced Materials\[J\], 2017, 29(17): 1605776. \[5\]LU Q, YU Y, MA Q, et al. Advanced Materials\[J\], 2016, 28(10): 1917-1933. \[6\]LI M, CUI Z, LI E. Ceramics International\[J\], 2019, 45(11): 14449-14456. \[7\]YI J, LI H, GONG Y, et al. Applied Catalysis B: Environmental\[J\], 2019, 243: 330-336. \[8\]PARZINGER E, MILLER B, BLASCHKE B, et al. ACS Nano\[J\], 2015, 9(11): 11302-11309. \[9\]PENG Q, XIONG R, SA B, et al. Catalysis Science & Technology\[J\], 2017, 7(13): 2744-2752. \[10\]LIN J, ZHANG B, ZHENG T. Journal of Physical Chemistry C\[J\], 2019, 123(45): 27697-27703. \[11\]WEN C, ZHANG Z, GUO Z, et al. Journal of Physics: Condensed Matter\[J\], 2020, 32(6): 065501. \[12\]ZHONG Q, LI Y, ZHANG G. Chemical Engineering Journal\[J\], 2021, 409: 128099. \[13\]GUO Z, ZHOU J, ZHU L, et al. Journal of Materials Chemistry A\[J\], 2016, 4(29): 11446-11452. \[14\]HONG L F, GUO R T, YUAN Y, et al. Materials Today Energy\[J\], 2020, 18: 100521. \[15\]ZHANG Y, SA B, MIAO N, et al. Journal of Materials Chemistry A\[J\], 2021, 9(17): 10882-10892. \[16\]WANG H, JIANG S, CHEN S, et al. Chemical Science\[J\], 2017, 8(5): 4087-4092. \[17\]SU T, SHAO Q, QIN Z, et al. ACS Catalysis\[J\], 2018, 8(3): 2253-2276. \[18\]ZHAO P, MA Y, LV X, et al. Nano Energy\[J\], 2018, 51: 533-538. \[19\]FU C F, SUN J, LUO Q, et al. Nano Letter\[J\], 2018, 18(10): 6312-6317. \[20\]JU L, SHANG J, TANG X, et al. Journal of the American Chemical Society\[J\], 2020, 142(3): 1492-1500. \[21\]SUN M, SCHWINGENSCHLGL U. Chemistry of Materials\[J\], 2020, 32(11): 4795-4800. \[22\]ZHOU Y, ZHOU L, HE J. ACS Applied Materials & Interfaces\[J\], 2022, 14(1): 1643-1651. \[23\]JI Y, YANG M, LIN H, et al. Journal of Physical Chemistry C\[J\], 2018, 122(5): 3123-3129. \[24\]JAMDAGNI P, PANDEY R, TANKESHWAR K. Nanotechnology\[J\], 2021, 33(2): 025703. \[25\]GAO X, SHEN Y, LIU J, et al. Journal of Materials Chemistry C\[J\], 2021, 9(42): 15026-15033. \[26\]WANG P, LIU H, ZONG Y, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13(29): 34178-34187. \[27\]HAFNER J. Journal of Computational Chemistry\[J\], 2008, 29(13): 2044-2078. \[28\]WANG G, PENG L, LI K, et al. Computational Materials Science\[J\], 2021, 186: 110064. \[29\]BLOCHL P E. Physical Review B Condensed Matter\[J\], 1994, 50(24): 17953-17979. \[30\]PERDEW J P, BURKE K, ERNZERHOF M. Physical Review Letters\[J\], 1996, 77(18): 3865-3868. \[31\]PERDEW J, BURKE K, ERNZERHOF M J P R L. Physical Review Letters\[J\], 1998, 80(4): 891. \[32\]TOGO A, OBA F, TANAKA I. Physical Review B\[J\], 2008, 78(13): 134106. \[33\]NOS S. Journal of Chemical Physics\[J\], 1984, 81(1): 511-519. \[34\]HEYD J, SCUSERIA G E, ERNZERHOF M. Journal of Chemical Physics\[J\], 2003, 118(18): 8207-8215. \[35\]BANERJEE S, JIANG X, WANG L W. Physical Chemistry Chemical Physics\[J\], 2018, 20(14): 9471-9479. \[36\]WENG M, LI S, ZHENG J, et al. Journal of Physical Chemistry Letters\[J\], 2018, 9(2): 281-285. \[37\]XIONG R, LI W, ZHANG Y, et al. Journal of Materials Chemistry C\[J\], 2022, 10(29): 10480-10490. \[38\]LU J, WEI A, ZHAO Y, et al. ACS Photonics\[J\], 2018, 5(12): 4912-4919. \[39\]TAO X, GU Y. Nano Letter\[J\], 2013, 13(8): 3501-3505. \[40\]MIAO N, XU B, BRISTOWE N C, et al. Journal of the American Chemical Society\[J\], 2017, 139(32): 11125-11131. \[41\]SA B, LI Y L, QI J, et al. Journal of Physical Chemistry C\[J\], 2014, 118(46): 26560-26568. \[42\]YU Y, ZHOU J, GUO Z, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13(24): 28090-28097. \[43\]BERNARDI M, PALUMMO M, GROSSMAN J C. Physical Review Letters\[J\], 2012, 108(22): 226805. \[44\]MORTAZAVI B, SHAHROKHI M, ZHUANG X, et al. Journal of Materials Chemistry C\[J\], 2022, 10(1): 329-336. \[45\]NRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Journal of Physical Chemistry B\[J\], 2004, 108(46): 17886-17892. \[46\]LUO Y, SUN M, YU J, et al. Chemistry of Materials\[J\], 2021, 33(11): 4128-4134.

备注/Memo

备注/Memo:
收稿日期:2022-07-19修回日期:2022-09-26 基金项目:国家自然科学基金资助项目(21973012);福建省自然 科学基金资助项目(2021J06011,2020J01351) 第一作者:熊锐,男,1993年生,博士研究生 通讯作者:萨百晟,男,1986年生,校聘教授,博士生导师, Email: bssa@fzu.edu.cn
更新日期/Last Update: 2023-03-22