[1]张馨月,陈志炜,李 文,等.热电材料中的电子输运机制及调控[J].中国材料进展,2022,41(12):990-1004.[doi:10.7502/j.issn.1674-3962.202208038]
 ZHANG Xinyue,CHEN Zhiwei,LI Wen,et al.Electronic Transport and Strategies in Thermoelectric Materials[J].MATERIALS CHINA,2022,41(12):990-1004.[doi:10.7502/j.issn.1674-3962.202208038]
点击复制

热电材料中的电子输运机制及调控()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
41
期数:
2022年第12期
页码:
990-1004
栏目:
出版日期:
2022-12-31

文章信息/Info

Title:
Electronic Transport and Strategies in Thermoelectric Materials
文章编号:
1674-3962(2022)12-0990-15
作者:
张馨月陈志炜李 文裴艳中
(同济大学材料科学与工程学院 材料交叉学科研究中心, 上海 201804 )
Author(s):
ZHANG Xinyue CHEN Zhiwei LI Wen PEI Yanzhong
(Interdisciplinary Materials Research Center, School of Materials Science and Engineering,Tongji University,Shanghai 201804,China)
关键词:
热电能量转换技术能带简并有效质量电子散射机制电学品质因子
Keywords:
thermoelectric energy conversion technology band convergence effective mass electron scattering mechanism electronic quality factor
分类号:
O472
DOI:
10.7502/j.issn.1674-3962.202208038
文献标志码:
A
摘要:
热电能量转换技术是一种利用材料内部带电载流子定向运动,实现热能和电能直接转换的清洁能源技术。热电转换效率主要取决于热电材料的性能,而热电材料的性能取决于内部载流子的输运性质,因此,热电研究中的一个关键问题是协调电子和声子的输运性质。在电输运方面,塞贝克系数和电导率的强烈耦合使得热电材料中功率因子的提升一直是一个难题,如何使这2者有效解耦以实现功率因子的整体提升是热电材料研究中的重点之一。将从玻尔兹曼输运方程出发,从决定电子输运过程的3个方面——态密度、电子速度、弛豫时间,来阐述热电材料中电输运行为的调控机制及方法,并综述相关的研究进展,介绍了近期聚焦于输运模型简化的相关研究。最后,对热电材料中电输运调控的未来发展方向进行了展望。
Abstract:
Thermoelectric energy conversion technology is a clean energy technology, enabling a direct energy conversion between heat and electricity using the charge carrier movement inside the material. The conversion efficiency mainly depends on the performance of thermoelectric material and thus the transport properties of carriers. Therefore, manipulation of both electrical and thermal transport properties for enhancing thermoelectric performance is the key. In terms of electronic transport, Seebeck coefficient and electrical conductivity are strongly coupled with each, leaving a key challenge to decouple these parameters for increasing power factor. In this review, starting with the Boltzmann transport equation, electronic transport behavior and its manipulation will be elaborated from three aspects which determines electronic transport (the density of states, electron velocity, and relaxation time), and the relevant researches will be summarized. In addition, recent studies focusing on simplification of existing transport models will be discussed. Finally, the prospect and expectation for the further development of electronic transport manipulation in thermoelectrics will be put forward.

备注/Memo

备注/Memo:
收稿日期:2022-08-31 修回日期:2022-10-12 基金项目:国家自然科学基金资助项目(52102292);博士后创新人才支持计划项目(BX20200237);中国博士后科学基金面上项目(2021M690119)第一作者:张馨月,女,1993年生,博士后 Email: xinyuezhang@tongji.edu.cn
更新日期/Last Update: 2022-11-30