[1]胡小刚,杜成杰,潘晓龙,等.中子毒物硼和钆在乏燃料后处理中的应用及合金相图研究[J].中国材料进展,2024,43(02):151-163.[doi:10.7502/j.issn.1674-3962.202209009]
 HU Xiaogang,DU Chengjie,PAN Xiaolong,et al.Application of Neutron Poison Boron and Gadolinium and Alloy Phase Diagram Study in Spent Fuel Reprocessing[J].MATERIALS CHINA,2024,43(02):151-163.[doi:10.7502/j.issn.1674-3962.202209009]
点击复制

中子毒物硼和钆在乏燃料后处理中的应用及合金相图研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第02期
页码:
151-163
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Application of Neutron Poison Boron and Gadolinium and Alloy Phase Diagram Study in Spent Fuel Reprocessing
文章编号:
1674-3962(2024)02-0151-13
作者:
胡小刚杜成杰潘晓龙刘承泽吴金平张于胜
1. 西安稀有金属材料研究院有限公司,陕西 西安 710016 2. 江苏科技大学材料科学与工程学院,江苏 镇江 212100 3. 西北有色金属研究院,陕西 西安 710016
Author(s):
HU Xiaogang DU Chengjie PAN Xiaolong LIU ChengzeWU Jinping ZHANG Yusheng
1. Xi’an Rare Metal Materials Institute Co., Ltd., Xi’an 710016, China 2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China 3. Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
关键词:
中子毒化Ti35锆合金相图
Keywords:
neutron poisoning Ti35 zirconium alloy boron gadolinium phase diagram
分类号:
TG146.4
DOI:
10.7502/j.issn.1674-3962.202209009
文献标志码:
A
摘要:
随着我国核电站在建及运行的反应堆日渐增多,乏燃料的产生、运输和储存成为核工业面临的严峻难题。对卸载出的巨量核废乏燃料,采用闭环处理循环利用,比传统深埋更加环保和安全。采用添加中子毒物的核结构材料制造相关设备和仪器,可以保障乏燃料后处理过程的运行安全。基于核工业应用要求,针对乏燃料后处理常用的316L不锈钢、Ti35、Zr等材料添加B或者Gd的相图展开调研,结果显示B和Gd可明显提高结构材料的中子吸收效果,但B和Gd的化学性质与过渡族金属Fe,Ti,Zr等相差甚远,除α-Zr最多固溶2.8%Gd(原子数分数)以外,B和Gd均不能大量固溶于常规金属合金体系中,强制添加势必对合金力学性能或耐蚀性能带来巨大危害。可采用团簇模型的合金设计理念,通过含B和Gd化合物相均匀析出或者复合的制造工艺以及Zr-Gd、Ti-Gd体系的多元合金化,引入互溶的中间相,增加难以固溶的元素的固溶度,以此解决中子毒物B和Gd在乏燃料后处理中的应用瓶颈。
Abstract:
With the increasing number of reactors in China’s nuclear power plants, the generation, transportation and storage of spent fuel have become a serious problem. The closed-loop treatment and recycling of the huge amount of dangerous nuclear spent fuel unloaded is more environmentally friendly and safe than traditional deep burial. Using neutron poison optimized structural materials to manufacture related equipment and instruments, can ensure the safe operation of spent fuel postprocessing. This work investigates the phase diagram of B or Gd added to 316L stainless steel, Ti35, zirconium and other materials commonly used in spent fuel reprocessing. The results show that B and Gd can significantly improve the neutron absorption effect of structural materials, but the chemical properties of B and Gd are far different from those of transition metal. The phase diagram shows that, except for the maximum solid solution of α-Zr is 2.8at% Gd, B and Gd cannot be dissolved in conventional metal alloy systems in large quantities. Forced addition is bound to bring great harm to the mechanical properties or corrosion resistance of the alloy. The cluster model can be adopted to increase the solid solubility of elements that are difficult to be dissolved. Through the manufacturing process of homogeneous precipitation or recombination of B and Gd compound phases and the multialloying of Zr-Gd and Ti-Gd systems, the mutually soluble intermediate phases can be introduced to solve the application bottleneck of neutron poisons B and Gd in spent fuel reprocessing.

参考文献/References:

[1] BIRKETT J E, CARROTT M J, FOX O D, et al. Recent Developments in the Purex Process for Nuclear Fuel Reprocessing: Complexant Based Stripping for Uranium/Plutonium Separation[J]. CHIMIA International Journal for Chemistry, 2005, 59(12): 898-904.
[2] HERBST R, BARON P, NILSSON M. Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing[M]. Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Elsevier. 2011: 141-75.
[3] GANESH S, DESIGAN N, PANDEY N K, et al. Extraction Studies of Gadolinium Relevant to Its Use as Neutron Poison in the PUREX Process[J]. Progress in Nuclear Energy, 2017, 98(234-238.
[4] 王峰, 王快社, 马林生, 等. 核级锆及锆合金研究状况及发展前景[J]. 兵器材料科学与工程, 2012, 35(1): 107-110.
(WANG F, WANG K-S, MA L-S, et al. Research Status and Development Prospect of Nuclear Grade Zirconium and Zirconium Alloys[J]. Ordnance Material Science and Engineering, 2012, 35(1): 107-110.)
[5] CHABAN N, KUZ’3MA Y B, BILONIZHKO N, et al. Dopov. Akad. Nauk Ukr. RSR, Ser. A [M]. A. 1979.
[6] CHANDRASEKARAN S, BASU P, KRISHNAN H, et al. Development of Gadolinium (Neutron poison) monitoring system for fuel reprocessing facilities: computational model and validation with experiments[J]. Progress in Nuclear Energy, 2018, 107(57-60).
[7] ROBINO C, MICHAEL J, DUPONT J, et al. Development of Gd-Enriched Alloys for Spent Nuclear Fuel Applications - Part 1: Preliminary Characterization of Small Scale Gd-Enriched Stainless Steels[J]. Journal of Materials Engineering and Performance, 2003, 12(206-14.
[8] 赵建. 西门子应用含硼不锈钢的经验[J]. 国外核动力, 1999, 20(3): 30-5.
(ZHAO J. Siemens Experience in the Application of Stainless Steel Containing Boron[J]. Foreign nuclear power, 1999, 20(3): 30-5.)
[9] HE J. The Effect of Boron Content, Temperature, and Neutron Fluence on the Mechanical Properties of the Modified Type 304 Stainless Steels with Boron[M]. The Pennsylvania State University, 1996.
[10] J H. High Born Steels[J]. Desestret Franch A, 1958.
[11] SHONO A, TSUNODA H, TAKEMURA M, et al. Development of Shielding Analysis Method for Large Fast Reactor Summary Results of Japanese-American Shielding Program for Experimental Research (JASPER)[J]. Nippon Genshiryoku Gakkai-Shi, 1996, 38(9): 760-70.
[12] HAN-GUANG F, ZHEN-HUA L, YONG-PING L, et al. Structural Variations in Heat Treated B-bearing Stainless Steel[J]. Materials & design, 2009, 30(3): 885-91.
[13] JI CHANGSONG. Neutron Detection Methods[M]. Beijing: Atomic Energy Press, 1998, 173-4.
[14] 刘常升, 崔虹雯, 陈岁元, 等. 高硼钢的组织与性能[J]. 东北大学学报(自然科学版), 2004, 25(3): 247-9.
(LIU C-J, CUI H W, CHEN S Y, et al. Microstructure and Properties of High Boron Steel[J]. Journal of Northeastern University (Natural Science Edition), 2004, 25(3): 247-9.)
[15] 王章涛. 含硼钢的制备、微观组织及性能的研究 [D]; 东北大学, 2001.
(WANG Z-T. Study on Preparation, Microstructure and Properties of Boron Containing Steel [D]. Northeastern University, 2001.)
[16] ACOSTA P, JIM NEZ J A, FROMMEYER G, et al. Microstructural Characterization of an Ultrahigh Carbon and Boron Tool Steel Processed by Different Routes[J]. Materials Science and Engineering: A, 1996, 206(2): 194-200.
[17] JIM NEZ J A, ADEVA P, CRISTINA M, et al. Characterization of Rapidly Solidified Ultrahigh Boron Steels[J]. Materials Science and Engineering: A, 1992, 159(1): 103-9.
[18] JIM NEZ J A, GONZ LEZ‐DONCEL G, RUANO O A. Mechanical Properties of Ultrahigh Boron Steels[J]. Advanced Materials, 1995, 7(2): 130-6.
[19] ACOSTA P, JIM NEZ J A, FROMMAYER G, et al. Superplastic behavior of thermomechanically processed Fe0.8B1.3C-1.6Cr (wt%) alloy[J]. Materials Letters, 1996, 26(1): 97-101.
[20] YANG L, WENJUN X, ZEHUA D, et al. TiC/TiB_2-FeNiCr Composite Prepared by Thermite Reaction[J]. Rare Metal Materials and Engineering, 2015, 44(3): 688-91.
[21] 佴启亮, 郑文杰, 宋志刚, 等. 固溶处理对含硼不锈钢组织和性能的影响[J]. 热加工工艺, 2013, 42(10): 212-5.
(NAI Q-L, ZHENG W-J, SONG Z-G, et al. Effect of Solution Treatment on Microstructure and Properties of Stainless Steel Containing Boron[J]. Hot Working Technology, 2013, 42(10): 212-5.)
[22] SMITH R J, LOOMIS G W, DELTETE C P. Borated Stainless Steel Application in Spent-Fuel Storage Racks. Final Report[R]. Electric Power Research Inst., 1992.
[23] GOL’DSHTEIN Y E, MIZIN V G. Some Peculiarities of the Structure of High Boron Steels[J]. Metal Science & Heat Treatment, 1988, 30(7): 479-84.
[24] ZHAO P. Effect of Annealing on the Microstructure of High Boron Steel Containing Zr[J]. Journal of Xihua University, 2010.
[25] LIU Z-L, CHEN X, LI Y-X, et al. High Boron Iron-Based Alloy and its Modification[J]. Journal of Iron and Steel Research International, 2009, 16(3): 37-42.
[26] YONG X, ZHIGUO C, XIANG W, et al. Influence of Ce on Microstructure and Properties of High-Carbon High-Boron Steel[J]. Rare Metal Materials and Engineering, 2015, 44(6): 1335-9.
[27] LI B, LIU Y, HE L, et al. Fabrication of in Situ TiB2 Reinforced Steel Matrix Composite by Vacuum Induction Melting and Its Microstructure and Tensile Properties[J]. International Journal of Cast Metals Research, 2010, 23(4): 211-5.
[28] LIU Y, LI B, LI J, et al. Effect of Titanium on the Ductilization of Fe-B Alloys with High Boron Content[J]. Materials Letters, 2010, 64(11): 1299-301.
[29] LI B, LIU Y, LI J, et al. Effect of Tungsten Addition on the Microstructure and Tensile Properties of in Situ TiB2/Fe Composite Produced by Vacuum Induction Melting[J]. Materials & Design, 2010, 31(2): 877-83.
[30] BAKER H. ASM Handbook Volume 03: Alloy Phase Diagrams [M]. USA: ASM International. 1992.
[31] DUPONT J, ROBINO C, MICHAEL J, et al. Physical and Welding Metallurgy of Gd-Enriched Austenitic Alloys for Spent Nuclear Fuel Applications-Part I: Stainless Steel Alloys[J]. WELDING JOURNAL-NEW YORK, 2004, 83(11): 289-S.
[32] KHAN Z. Influence of gadolinium on the microstructure and Mechanical Properties of Steel and stainless Steel[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2012, 112(4): 309-21.
[33] ZHANG W, LI C, SU X, et al. An Updated Evaluation of the Fe-Gd (Iron-Gadolinium) System[J]. Journal of phase equilibria, 1998, 19(1): 56.
[34] MIZIA R, MICHAEL J, WILLIAMS D, et al. Physical and Welding Metallurgy of Gd-enriched Austenitic Alloys for Spent Nuclear Fuel Applications Part II: Nickel-Based Alloys[J]. Welding Journal, 2004, 83(289-300.
[35] SOV. Powder Metall Met Ceram (Engl Transl), 1969, 9(8(80)): 657-9.
[36] PLOTNIKOVA A, ILYUSHCHENKO N, ANFINOGENOV A, et al. Thermodynamic and Metallographic Investigations of the System Boron-iron[J]. Tr. Inst. Elektrokhim., Ural. Nauch. Tsentr. Akad. Nauk SSSR, 1972(18):112-118.
[37] 刘承新. 锆合金在核工业中的应用现状及发展前景[J]. 稀有金属快报, 05): 21-3.
(LIU C-X. Application Status and Development Prospect of Zirconium Alloy in Nuclear Industry [J]. Rare Metals Letters, 2004, 023(005):21-23.)
[38] 吕镇和, 郑杰, 陆岩. B4C-Zr-2弥散合金的研制[J]. 稀有金属, 1996, 3): 187-92.
(LV Z H, ZHENG J, LU Y. Preparation of B4C-Zr-2 Dispersion Alloy [J]. Rare Metals, 1996, 3): 187-92.)
[39] DUNNING D, ANDERSON W, MERTENS P. Boron Containing Control Materials[J]. Nuclear Science and Engineering, 1958, 4(3): 402-14.
[40] 夏生兰. B4C+Zr-2的氧化[J]. 核动力工程, 1989, 10(3):4.
(XIA S-L. Oxidation of B4C+Zr-2[J]. Nuclear Power Engineering, 1989, 10(3):4.)
[41] 尹耀铮. 可燃毒物在轻水反应堆中的应用[J]. 国外核技术, 1981, 1(4): 1-2.
(YIN Y-Z. Application of Combustible Toxicants in Light Water REACTOR [J]. Foreign Nuclear Technology, 1981, 1(4): 1-2.
[42] BIRZHEVOI G, BYKOV V, RUDENKO V, et al. Study of Swelling of Irradiated Zr-B alloys[J]. Fizika Metallov i Metallovedenie, 1979, 47(4): 763-768.
[43] 熊继初. B4C-Zr-2可燃毒物的辐照性能及其评价[J]. 核动力工程, 11(2): 84-8.
(XIONG J-C. Irradiation Properties and Evaluation of B4C-Zr-2 Combustible Toxicants[J]. Nuclear Power Engineering, 11(2): 84-8.)
[44] KITANO Y, KUROSAKI K, KIMURA H, et al. Effects of Zr/Gd Ratio and Hydrogen content on the Mechanical and Thermal Properties of Hydrides of Zr-Gd Alloys[J]. Transactions of the Atomic Energy Society of Japan, 2011, 10(1): 48-54.
[45] KITANO Y, KUROSAKI K, ITO M, et al. Fabrication and Mechanical Characterization of Zirconium and Gadolinium Hydrides[J]. Journal of Nuclear Materials, 389(1): 170-2.
[46] OKAMOTO H. B-Zr (Boron-Zirconium)[J]. Journal of Phase Equilibria, 1993, 14(2): 261-2.
[47] ROGL P, POTTER P. A Critical Review and Thermodynamic Calculation of the Binary System: Zirconium-Boron[J]. Calphad, 1988, 12(2): 191-204.
[48] OKAMOTO H. Supplemental Literature Review of Binary Phase Diagrams: Au-Ce, B-Pr, Bi-Gd, Bi-Ho, Cd-Sr, Ga-Ti, Gd-Pb, Gd-Ti, Mg-Mn, Mn-Nd, Nd-Ni, and Ni-Ti[J]. Journal of Phase Equilibria and Diffusion, 2015, 36(4): 390-401.
[49] OKAMOTO, HIROAKI. Supplemental Literature Review of Binary Phase Diagrams: Ag-Sn, Al-Pd, Ba-Gd, Ba-Pr, Cu-P, Dy-Ni, Ga-Mn, Gd-Sb, Gd-Zr, Ho-Te, Lu-Sb, and Mn-Nb[J]. Journal of Phase Equilibria & Diffusion, 35(1): 105-16.
[50] MATTERN N, HAN J H, ZINKEVICH M, et al. Experimental and Thermodynamic Assessment of the Gd–Zr System[J]. Calphad, 2012, 39: 27-32.
[51] COPELAND M I, ARMANTROUT C E, KATO H. Zirconium-Gadolinium Equilibrium Diagram (Vol. 5850) [M]. US Department of the Interior, Bureau of Mines, 1961.
[52] MASSALSKI T. Binary Alloy Phase Diagrams ASM International[J]. Materials Park, OH, 1990, 1442-6.
[53] ZINKEVICH M, MATTERN N, SEIFER H J. Thermodynamic Assessment of Gd-Zr and Gd-Mo Systems[J]. Journal of Phase Equilibria, 2001, 22(1): 43-50.
[54] OKAMOTO H. Gd-Zr (Gadolinium-Zirconium)[J]. Journal of Phase Equilibria and Diffusion, 2005, 26(1): 100.
[55] HE W, HE J, WANG X, et al. Isothermal Section of the Gd–Zr–Si Ternary System at 773 K[J]. Journal of alloys and compounds, 2010, 494(1-2): 128-31.
[56] KAZAKOV V A, POKROVSKY A S, SMIRNOV A V. Strengthening and Void Formation in the Mo-Zr-B Alloy Under Neutron Irradiation[J]. Nuclear Technology, 1981, 53:3(3): 392-406.
[57] KAZAKOV V, POKROVSKIJ A, SMIRNOV A. Mechanical Properties and Structure of Refractory Metal Base Alloys Exposed to Neutron Irradiation[J].
[58] 吴金平, 杨英丽, 奚正平, 等. Ti35合金焊接接头在高温硝酸中的腐蚀性能研究[J]. 钛工业进展, 2012, 29(1): 22-5.
(WU J-P, YANG Y-L, XI Z-P, et al. Corrosion Behavior of Ti35 Alloy Welded Joint in High Temperature Nitric Acid [J]. Titanium Industry Progress, 2012, 29(1): 22-5.)
[59] PREDEL F. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys: Ti-Ta [M]. Berlin: Springer, 2013.
[60] M LEK J, HNILICA F, VESEL J. Beta Titanium Alloy Ti35Nb6Ta with Borin Addition Beta Titanova Slitina Ti35Nb6Ta S P??DAVKEM B?RU[J]. Metal, 2012. 5:23-25.
[61] MURRAY J, LIAO P, SPEAR K. The B-Ti (Boron-titanium) System[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(6): 550-5.
[62] OUYANG X, YIN F, HU J, et al. Thermodynamic Modeling of B-Ta and B-C-Ta Systems[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(6): 874-886.
[63] KAUFMAN L. Coupled Thermochemical and Phase Diagram Data for Tantalum Based Binary Alloys[J]. Calphad, 1991, 15(3): 243-59.
[64] KABAN I, NOWAK R, SHULESHOVA O, et al. Sessile Drop Study of Gd–Ti Monotectic Alloys on Ceramic Substrates: Phase Transformations, Wetting, and Reactivity[J]. Journal of Materials Science, 2012, 47(24): 8381-6.
[65] MATTERN N, HAN J, FABRICHNAYA O, et al. Experimental and Thermodynamic Assessment of the Gd–Ti System[J]. Calphad, 2013, 42(19-26.
[66] PREDEL F. Crystallographic and Thermodynamic Data of Binary Alloys:Gd-Ta (Gadolinium-Tantalum)[J]. Phase Equilibria, 2013, Berlin Springer, Heidelberg, 2013: 130-130.
[67] DONG C, WANG Z-J, ZHANG S, et al. Review of Structural Models for the Compositional Interpretation of Metallic Glasses[J]. International Materials Reviews, 2020, 65(5): 286-96.
[68] DONG D, WANG Q, DONG C, et al. Molecule-like Chemical Units in Metallic Alloys[J]. Science China Materials, 2021, 64(10): 2563-71.
[69] 赵亚军. 基于团簇模型设计的 Cu-Ni-Mo 合金的结构及导电性[D]; 大连理工大学, 2012.
(ZHAO Y J. Structure and Electrical Conductivity of Cu-Ni-Mo Alloy Designed Based on Cluster Model[D]. Dalian University of Technology, 2012.)
[70] LI H, ZHAO Y, LI X, et al. Electrical Resistivity Interpretation of Ternary Cu–Ni–Mo Alloys Using a Cluster-Based Short-Range-Order Structural Model[J]. Journal of Physics D: Applied Physics, 2015, 49(3): 035306.�C;

备注/Memo

备注/Memo:
收稿日期:2022-09-07修回日期:2022-10-14 基金项目:国家自然科学基金项目(52201021);陕西省重点研发计划项目(2021GY-249);国防科技工业核材料创新基金项目(ICNM-2021-ZH-16) 第一作者:胡小刚,男,1988年生,高级工程师,硕士生导师 通讯作者:潘晓龙,男,1979年生,教授,硕士生导师, Email:xlpan_rmi@126.com
更新日期/Last Update: 2024-01-29