[1]高红霞,刘亚琼,张李玲,等.光热响应性水凝胶组织工程移植物研究进展[J].中国材料进展,2023,42(07):534-548.[doi:10.7502/j.issn.1674-3962.202303002]
 GAO Hongxia,LIU Yaqiong,ZHANG Liling,et al.Research Progress of Photothermal Responsive Hydrogel Tissue Engineering Grafts[J].MATERIALS CHINA,2023,42(07):534-548.[doi:10.7502/j.issn.1674-3962.202303002]
点击复制

光热响应性水凝胶组织工程移植物研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第07期
页码:
534-548
栏目:
出版日期:
2023-07-31

文章信息/Info

Title:
Research Progress of Photothermal Responsive Hydrogel Tissue Engineering Grafts
文章编号:
1674-3962(2023)07-0534-15
作者:
高红霞1刘亚琼1张李玲1孙韶兰1管文超1王晓路2黄然3李贵才1
1. 南通大学 神经再生重点实验室,江苏 南通 226001 2. 苏州丝美特技术有限公司,江苏 苏州 215168 3. 凯喜雅控股有限公司,浙江 杭州 310004
Author(s):
GAO Hongxia1LIU Yaqiong 1ZHANG Liling 1SUN Shaolan1GUAN Wenchao1WANG Xiaolu2 HUANG Ran3 LI Guicai1
1. Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, China 2. Suzhou SIMATECH Co., Ltd., Suzhou 215168, China 3. Cathaya Holding Co., Ltd., Hangzhou 310004, China
关键词:
组织工程移植物水凝胶光热响应性纳米材料
Keywords:
tissue engineering grafts hydrogels photothermal response nanomaterials
分类号:
TQ427.2+6;R318.08
DOI:
10.7502/j.issn.1674-3962.202303002
文献标志码:
A
摘要:
组织工程是一个多学科交叉的领域,旨在除传统的创后/术后组织再生手段(自体移植、异体移植)外,利用现代技术设计和开发特定的生物材料,为组织损伤修复提供新的治疗思路。在组织工程应用的各种生物材料中,水凝胶由于其独特的生物相容性、力学可调性、可降解性、高度亲水性等性质,被广泛应用于生物医学工程领域。其中光热响应性水凝胶除了满足传统水凝胶的特性外,还具有温度可控、智能响应等优点,因此在组织工程、再生医学和药物缓释领域显示出很好的应用前景。然而,目前鲜有对光热响应性水凝胶作为组织工程移植物的系统性总结。概述了近几年来光热响应性水凝胶移植物的研究与发展,包括光热响应性水凝胶的历史背景和实际应用,总结了相关的研究成果并进行了讨论,最后提出了未来可能遇到的挑战并进行了展望,以期促进光热响应性水凝胶在组织工程领域的发展,供相关研究人员参考。
Abstract:
Tissue engineering is a multidisciplinary field that aims to provide new therapeutic ideas using modern technologies to design and develop specific biomaterials in addition to the traditional means of post-traumatic/post-operative tissue regeneration (autologous transplantation, allografts). Among various biomaterials for tissue engineering applications, hydrogels are widely used in biomedical engineering due to their unique biocompatible, mechanically tunable, degradable and highly hydrophilic properties. Among them,photothermal responsive hydrogels have the advantages of temperature controllable and intelligent response in addition to the properties of traditional hydrogels, and thus show promising applications in the fields of tissue engineering, regenerative medicine and drug slow release. However, there are few systematic summaries of photothermal responsive hydrogels as tissue engineering grafts. This review provides an overview of the research and development of photothermal responsive hydrogel grafts in recent years,including the historical background of photothermal responsive hydrogels and practical applications, summarizes the relevant research results and discusses them, and finally presents possible challenges and outlooks in the future, with a view to promoting development of photothermal responsive hydrogels in the field of tissue engineering for the reference of related researchers.

参考文献/References:

\[1\]NIEMCZYKSOCZYNSKA B, ZASZCZYN′SKA A, ZABIELSKI K, et al. Materials\[J\], 2021, 14(22): 6899. \[2\]KIM Y, SON K H, LEE J W. Materials\[J\], 2021, 14(22): 6821. \[3\]LI Y, MA Z, REN Y, et al. Frontiers in Neurology\[J\], 2021, 12: 768267. \[4\]THARAKAN S, KHONDKAR S, ILYAS A. Sensors\[J\], 2021, 21(22): 7477. \[5\]JAFARIHAGHIGHI F, ARDJMAND M, MIRZADEH A, et al. Cell and Tissue Banking\[J\], 2020, 21(3): 377-403. \[6\]ZHAO J, BAI L, REN X K, et al. Acta Biomaterialia\[J\], 2019, 97: 344-359. \[7\]LEE J H, KIM H W. Journal of Tissue Engineering\[J\], 2018, 9:1-4. \[8\]SERNA J A, RUEDAGENSINI L, CSPEDESVALENZUELA D N, et al. Polymers\[J\], 2021, 13(19): 3263. \[9\]COMAN B P, BUCTARIU S M, CONSTANTIN M, et al. Gels\[J\], 2022, 8(12): 824. \[10\]ZHANG Z, HU Y, MA H, et al. Polymers\[J\], 2022, 14(23): 5247. \[11\]ANSARI M J, RAJENDRAN R R, MOHANTO S, et al. Gels\[J\], 2022, 8(7): 454. \[12\]XU X, WANG L, JING J, et al. Frontiers in Bioengineering and Biotechnology\[J\], 2022, 10: 912497. \[13\]ZHANG J, WANG Y, SHU X, et al. Carbohydrate Polymers\[J\], 2023, 314: 120918. \[14\]WANG Z, JIN X, ZHANG B, et al. Journal of Orthopaedic Translation\[J\], 2023, 40: 104-115. \[15\]LIU X, DOU G, LI Z, et al. Advanced Science\[J\], 2022, 9(21): 2105650. \[16\]XU L, BAI E, ZHU Y, et al. Pharmaceutics\[J\], 2023, 15(1): 257. \[17\]ZOHREBAND Z, ADELI M, ZEBARDASTI A. International Journal of Biological Macromolecules\[J\], 2021, 182: 2048-2055. \[18\]ELHUSSEINY H M, MADY E A, HAMABE L, et al. Materials Today Bio\[J\], 2022, 13: 100186. \[19\]FAN D, STAUFER U, ACCARDO A. Bioengineering\[J\], 2019, 6(4): 113. \[20\]LEI L, BAI Y, QIN X, et al. Gels\[J\], 2022, 8(5): 301. \[21\]LAVRADOR P, ESTEVES M R, GASPAR V M, et al. Advanced Functional Materials\[J\], 2021, 31(8): 2005941. \[22\]FIGUEROAPIZANO M D, VLAZ I, PEAS F J, et al. Carbohydrate Polymers\[J\], 2018, 195: 476-485. \[23\]VEJJASILPA K, MAQSOOD I, SCHULZSIEGMUND M, et al. International Journal of Molecular Sciences\[J\], 2023, 24(1): 572. \[24\]LAVANYA K, CHANDRAN S V, BALAGANGADHARAN K, et al. Materials Science & Engineering CMaterials for Biological Applications\[J\], 2020, 111: 110862. \[25\]SAID S S, CAMPBELL S, HOARE T. Chemistry of Materials\[J\], 2019, 31(14): 4971-4989. \[26\]FU F, CHEN Z, WANG H, et al. Nanoscale\[J\], 2019, 11(22): 10846-10851. \[27\]OSSIPOV D A, ROMERO A B, OSSIPOVA E. Carbohydrate Polymers\[J\], 2018, 180: 145-155. \[28\]CHEAH E, BANSAL M, NGUYEN L, et al. Acta Biomaterialia\[J\], 2023, 158: 87-100. \[29\]MA Y, YANG J, HU Y, et al. Colloids and Surfaces BBiointerfaces\[J\], 2022, 220: 112947. \[30\]XU J, LI Y, YANG J, et al. International Journal of Biological Macromolecules\[J\], 2023, 230: 123257. \[31\]ZHANG J, SHANG Z, JIANG Y, et al. Regenerative Biomaterials\[J\], 2021, 8(1): rbaa047. \[32\]HOSSEINIFAR T, SHEYBANI S, ABDOUSS M, et al. Journal of Biomedical Materials Research Part A\[J\], 2018, 106(2): 349-359. \[33\]ZHANG M, LI L, AN H, et al. Gels\[J\], 2021, 7(4): 152. \[34\]MANTHA S, PILLAI S, KHAYAMBASHI P, et al. Materials\[J\], 2019, 12(20): 3323. \[35\]BASAK S. Biotechnology and Bioprocess Engineering\[J\], 2020, 25(5): 655-669. \[36\]YANG Y, ZHANG Y, XIE S, et al. Materials Chemistry Frontiers\[J\], 2021, 5(9): 3524-3548. \[37\]SUN A, HE X, JI X, et al. Chinese Chemical Letters\[J\], 2021, 32(7): 2117-2126. \[38\]MA H, YU G, CHENG J, et al. Biomacromolecules\[J\], 2023, 24(2): 868-885. \[39\]LI X, ZHANG D, LU G, et al. Advanced Materials\[J\], 2021, 33(38): 2102799. \[40\]CUI X, RUAN Q, ZHUO X, et al. Chemical Reviews\[J\], 2023, 123(11): 6891-6952. \[41\]PHAN L M T, VO T A T, HOANG T X, et al. Nanomaterials\[J\], 2021, 11(4): 906. \[42\]LV Z, HE S, WANG Y, et al. Advanced Healthcare Materials\[J\], 2021, 10(6): e2001806. \[43\]SHI X, TIAN Y, LIU Y, et al. Frontiers in Oncology\[J\], 2022, 12: 939365. \[44\]KIM D, AMATYA R, HWANG S, et al. Pharmaceutics\[J\], 2021, 13(4): 575. \[45\]LI Z, CHEN Y, YANG Y, et al. Frontiers in Bioengineering and Biotechnology\[J\], 2019, 7: 293. \[46\]PIKULA K, JOHARI S A, GOLOKHVAST K. Nanomaterials\[J\], 2022, 12(23): 4149. \[47\]HUANG H, WANG X, WANG W, et al. Biomaterials\[J\], 2022, 280: 121289. \[48\]LIU Y, BHATTARAI P, DAI Z, et al. Chemical Society Reviews\[J\], 2019, 48(7): 2053-2108. \[49\]ZHEN X, PU K, JIANG X. Small\[J\], 2021, 17(6): 2004723. \[50\]LU T Y, CHIANG C Y, FAN Y J, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13(8): 10287-10300. \[51\]LIU H, YANG Y, LIU Y, et al. Advanced Science\[J\], 2020, 7(7): 1903129. \[52\]YUE Y, ZHAO X. International Journal of Molecular Sciences\[J\], 2021, 22(1): 399. \[53\]YU C, XU L, ZHANG Y, et al. ACS Applied Polymer Materials\[J\], 2020, 2(10): 4289-4305. \[54\]XIONG J, BIAN Q, LEI S, et al. Nanoscale\[J\], 2021, 13(10): 5369-5382. \[55\]XU L, CHEN Y, ZHANG P, et al. Biomaterials Science\[J\], 2022, 10(19): 5648-5661. \[56\]HAO M, CHEN B, ZHAO X, et al. Materials Chemistry Frontiers\[J\], 2020, 4(9): 2571-2609. \[57\]SEABERG J, MONTAZERIAN H, HOSSEN M N, et al. ACS Nano\[J\], 2021, 15(2): 2099-2142. \[58\]PARK W, SHIN H, CHOI B, et al. Progress in Materials Science\[J\], 2020, 114: 100686. \[59\]CHEN X, TONG R, SHI Z, et al. ACS Applied Materials & Interfaces\[J\], 2018, 10(3): 2328-2337. \[60\]SU J, LI J, LIANG J, et al. Life\[J\], 2021, 11(10): 1016. \[61\]KARAMI F, SABERSAMANDARI S. Biomedical Materials (Bristol, England)\[J\], 2023, 18(2): acb0a3. \[62\]GHAFFARIBOHLOULI P, SIMIN′SKASTANNY J, JAFARI H, et al. International Journal of Biological Macromolecules\[J\], 2023, 232: 123348. \[63\]WANG X, ZHAO D, LI Y, et al. International Journal of Biological Macromolecules\[J\], 2023, 232: 123413. \[64\]ALULA K, ADALI T, HAN E O. BioMedical Materials and Engineering\[J\], 2023, 34(1): 77-93. \[65\]ELKHOURY K, MORSINK M, SANCHEZGONZALEZ L, et al. Bioactive Materials\[J\], 2021, 6(11): 3904-3923. \[66\]BOLANTA S O, MALIJAUSKAITE S, MCGOURTY K, et al. ACS Omega\[J\], 2022, 7(11): 9108-9117. \[67\]CHEN X, ZHANG M, ZHU D, et al. European Polymer Journal\[J\], 2023, 196: 112252. \[68\]BABALUEI M, MOTTAGHITALAB F, SEIFALIAN A, et al. International Journal of Biological Macromolecules\[J\], 2023, 236: 124005. \[69\]LI C, HE X, LI Q, et al. NPG Asia Materials\[J\], 2023, 15(1): 1-10. \[70\]LIU J, QU M, WANG C, et al. Small\[J\], 2022, 18(17): 2106172. \[71\]SUN Z, LYU F, WU S, et al. Carbohydrate Polymers\[J\], 2022, 295: 119852. \[72\]WANG G, YUAN N, LI N, et al. ACS Applied Materials & Interfaces\[J\], 2022, 14(31): 35319-35332. \[73\]JIANG B, LIU X, YANG C, et al. Science Advances\[J\], 2020, 6(41): eabc4824. \[74\]WEI S, QIU H, SHI H, et al. ACS Nano\[J\], 2021, 15(6): 10415-10427. \[75\]HU W, WANG Z, XIAO Y, et al. Biomaterials Science\[J\], 2019, 7(3): 843-855. \[76\]CHEN C, WANG J, XU Z, et al. International Journal of Biological Macromolecules\[J\], 2023, 247: 125595. \[77\]WANG J, WANG L, WU C, et al. ACS Applied Materials & Interfaces\[J\], 2020, 12(41): 46816-46826. \[78\]DHAND A P, GALARRAGA J H, BURDICK J A. Trends in Biotechnology\[J\], 2021, 39(5): 519-538. \[79\]GENEVRO G M, DE M M A, BEPPU M M. International Journal of Biological Macromolecules\[J\], 2019, 128: 401-405. \[80\]MIHAJLOVIC M, STAROPOLI M, APPAVOU M S, et al. Macromolecules\[J\], 2017, 50(8): 3333-3346. \[81\]CAO H, LI Z, CHEN Y, et al. Composites Part B: Engineering\[J\], 2023, 263: 110871. \[82\]LU C H, YU C H, YEH Y C. Acta Biomaterialia\[J\], 2021, 130: 66-79. \[83\]HOU D D, GENG X, YE L, et al. Frontiers of Materials Science in China\[J\], 2010, 4(1): 70-77. \[84\]KANG S, KIM T, KIM B, et al. Journal of Industrial and Engineering Chemistry\[J\], 2018, 68: 1-5. \[85\]ZHONG Y, LI P, HAO J, et al. ACS Applied Materials & Interfaces\[J\], 2020, 12(5): 6471-6478. \[86\]CHEN Q, LI S, ZHAO W, et al. Biomaterials Advances\[J\], 2022, 138: 212873. \[87\]PEDERSEN S L, HUYNH T H, PSCHKO P, et al. ACS Nano\[J\], 2020, 14(7): 9145-9155. \[88\]DONG M, SHI B, LIU D, et al. ACS Nano\[J\], 2020, 14(12): 16565-16575. \[89\]ZHOU R, ZHOU Q, LING G, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects\[J\], 2023, 660: 130832. \[90\]HUANG K, LIU W, WEI W, et al. ACS Nano\[J\], 2022, 16(11): 19491-19508. \[91\]XIE G, ZHOU N, DU S, et al. Fundamental Research\[J\], 2022, 2(2): 268-275. \[92\]WANG Y, LI L, SHI X, et al. Particle & Particle Systems Characterization\[J\], 2020, 37(2): 1900421. \[93\]LUO M, DOROTHY W D, NIU W, et al. Chemical Engineering Journal\[J\], 2022, 431: 133596. \[94\]HUI Y, YAN Z, YANG H, et al. ACS Applied Bio Materials\[J\], 2022, 5(10): 4741-4759. \[95\]WANG Y Q, ZHU Y, WANG J H, et al. Composites Science and Technology\[J\], 2021, 206: 108653. \[96\]ZHANG L, ZHANG X, LI L, et al. Macromolecular Materials and Engineering\[J\], 2020, 305(2): 1900718. \[97\]SATAPATHY M K, NYAMBAT B, CHIANG C W, et al. Molecules\[J\], 2018, 23(6): 1256. \[98\]YANG G, WAN X, GU Z, et al. Journal of Materials Chemistry B\[J\], 2018, 6(11): 1622-1632. \[99\]LU J, WANG W, XU Z, et al. Journal of Colloid and Interface Science\[J\], 2023, 633: 657-667. \[100\]CHANG R, ZHAO D, ZHANG C, et al. International Journal of Biological Macromolecules\[J\], 2023, 226: 870-884. \[101\]OPT V R C, WALBOOMERS X F, JANSEN J A, et al. Tissue Engineering Part B: Reviews\[J\], 2020, 26(3): 230-248. \[102\]JIN L, GUO X, GAO D, et al. Bioactive Materials\[J\], 2022, 16: 162-172. \[103\]ZHANG M, FAN Z, ZHANG J, et al. International Journal of Biological Macromolecules\[J\], 2023, 232: 123445. \[104\]HE P P, DU X, CHENG Y, et al. Small (Weinheim an Der Bergstrasse, Germany)\[J\], 2022, 18(40): e2200263. \[105\]QU X, LIU J, WANG S, et al. Chemical Engineering Journal\[J\], 2023, 453: 139785. \[106\]NI T, ZHU Y, HAO L, et al. Materials & Design\[J\], 2022, 217: 110643. \[107\]ZHANG X, TAN B, WU Y, et al. Polymers\[J\], 2021, 13(13): 2100. \[108\]VEITH A P, HENDERSON K, SPENCER A, et al. Advanced Drug Delivery Reviews\[J\], 2019, 146: 97-125. \[109\]LIU H, ZHU X, GUO H, et al. Applied Materials Today\[J\], 2020, 20: 100781. \[110\]LI G, ZHANG L, HAN Q, et al. Composites Part B: Engineering\[J\], 2023, 254: 110551.

备注/Memo

备注/Memo:
收稿日期:2023-03-03修回日期:2023-07-18 基金项目:国家自然科学基金项目(32171352);南通市“226” 高层次人才培养项目(第二层次,2022 II-276) 第一作者:高红霞,女,1998年生,硕士研究生 刘亚琼,女,1999年生,硕士研究生 通讯作者:李贵才,男,1981年生,教授,博士生导师, Email: gcli1981@ntu.edu.cn
更新日期/Last Update: 2023-07-03