[1]韩淼,郑汉,王宇帆,等.微针协同光学疗法用于疾病治疗研究进展[J].中国材料进展,2023,42(07):549-558.[doi:10.7502/j.issn.1674-3962.202304018]
 HAN Miao,ZHENG Han,WANG Yufan,et al.Advances in Microneedles-Assisted Phototherapy for Diseases Treatment[J].MATERIALS CHINA,2023,42(07):549-558.[doi:10.7502/j.issn.1674-3962.202304018]
点击复制

微针协同光学疗法用于疾病治疗研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第07期
页码:
549-558
栏目:
出版日期:
2023-07-31

文章信息/Info

Title:
Advances in Microneedles-Assisted Phototherapy for Diseases Treatment
文章编号:
1674-3962(2023)07-0549-10
作者:
韩淼郑汉王宇帆史龙午周恬王烁李鹏
西北工业大学 柔性电子研究院,陕西 西安 710072
Author(s):
HAN Miao ZHENG Han WANG Yufan SHI Longwu ZHOU Tian WANG ShuoLI Peng
Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
微针光动力疗法光热疗法癌症治疗伤口管理医学美容
Keywords:
microneedles photodynamic therapy photothermal therapy cancer therapy wound management aesthetic medicine
分类号:
R319;R454.2
DOI:
10.7502/j.issn.1674-3962.202304018
文献标志码:
A
摘要:
微针作为一种新兴的透皮给药技术,可绕过肝脏首过效应及皮下注射带来的疼痛问题进行微创无痛的局部给药。但使用微针递送的药物大都属于被动给药,药物释放速率受限。光学疗法在癌症及皮肤病治疗等领域展现出独特的优势,但为了实现优异的治疗效果往往需要较高的光敏剂剂量和激光辐照强度,这不可避免地会带来毒性和皮肤损伤。近年来,微针已与多种策略(pH响应、电响应、光学疗法等)联合用于多种疾病治疗。微针与光动力、光热等光学疗法协同应用可以优势互补,在一定程度上降低所使用光敏剂和光热剂的剂量或激光辐照的强度,减少毒性和治疗过程中对皮肤造成的损伤。此外,微针与光响应材料结合可以精确有效地递送药物,增强疗效。综述了近年来微针协同光动力、光热疗法在癌症治疗、伤口管理、医学美容等领域的研究进展,以期为之后更多的研究提供一些参考。
Abstract:
As an emerging transdermal drug delivery technology, microneedles offer the advantage of bypassing the hepatic firstpass metabolism and reducing the discomfort associated with subcutaneous injections, thus enabling minimally invasive and painless local drug delivery. However, drug delivery using microneedles is mostly passive and the drug release rate is limited.Phototherapy has demonstrated significant potential in the treatment of cancer and skin diseases. Nevertheless, achieving optimal therapeutic outcomes generally requires high doses of photosensitizers and laser irradiation, which can lead to toxicity and skin damage. Recently, microneedles have been combined with various strategies (pH response, electro-response, phototherapy, etc.) for the treatment of various diseases. The synergistic application of microneedles and phototherapy (photodynamic therapy,photothermal therapy) can complement each other, reducing the dose of photosensitizers and photothermal agents or the intensity of laser irradiation. Consequently, this approach decreases the toxicity and damage to the skin caused by the treatment process. Moreover, the combination of microneedles and phototherapy enables precise and effective drug delivery, thereby enhancing the overall therapeutic efficacy. This article overviewed the recent research advances in the field of microneedles assisted with photodynamic and photothermal therapies for the treatment of various diseases, including cancer therapy, wound management, aesthetic medicine and other diseases, so as to serve as a valuable reference for future research.

参考文献/References:

\[1\]ROGER M, FULLARD N, COSTELLO L, et al.Journal of Anatomy\[J\], 2019, 234: 438-455. \[2\]田霞,王宁,丁江生.中国新药杂志\[J\],2021,30(2):119-124. TIAN X, WANG N, DING J S. Chinese Journal of New Drugs\[J\], 2021, 30(2): 119-124. \[3\]WAGHULE T, SINGHVI G, DUBEY S K, et al. Biomedicine & Pharmacotherapy\[J\], 2019, 109: 1249-1258. \[4\]王菁华,程曼曼,施沁青,等.中南药学\[J\],2021,19(4): 671-678. WANG J H, CHENG M M, SHI Q Q, et al. Central South Pharmacy\[J\], 2021, 19(4):671-678. \[5\]BHATNAGAR S, BANKAR N G, KULKARNI M V, et al. International Journal of Pharmaceuticcs\[J\], 2019, 556: 263-275. \[6\]ZAN P, AUNG T, PHAN K D, et al. Advanced Therapeutics\[J\], 2019, 2(10): 1900064. \[7\]CHI J, ZHANG X, CHEN C, et al. Bioactive Materials\[J\], 2020, 5: 253-259. \[8\]ULLAH A, CHOI H J, JANG M, et al. Pharmaceutics\[J\], 2020, 12(7): 606. \[9\]ZHANG T, SUN B, GUO J, et al. Acta Biomaterialia\[J\], 2020, 115: 136-147. \[10\]XIN Q, SHAH H, NAWAZ A, et al. Advanced Materials\[J\], 2019, 31(45): 1804838. \[11\]MALEKI A, HE J, BOCHANI S, et al. ACS Nano\[J\], 2021, 15(12): 18895-18930. \[12\]FU J J, LI C W, LIU Y, et al. Journal of Nanobiotechnology\[J\], 2020, 18: 146. \[13\]HUO J, JIA Q, HUANG H, et al. Chemical Society Reviews\[J\], 2021, 50: 8762-8789. \[14\]JAMALEDIN R, YIU C K Y, ZARE E N, et al. Advanced Materials\[J\], 2020, 32(33): 2002129. \[15\]JEONG H R, BAE J Y, PARK J H, et al. Journal of Controlled Release\[J\], 2020, 324: 280-288. \[16\]TRAN K T M, GAVITT T D, FARRELL N J, et al. Nature Biomedical Engineering\[J\], 2021, 5: 998-1007. \[17\]LEE Y D, YANG J K, HAN S, et al. Archives for Dermatological Research\[J\], 2023, 315: 885-893. \[18\]HUANG Y, PENG T, HU W, et al. Journal of Controlled Release\[J\], 2022, 343: 408-419. \[19\]PICCOLO D, KOSTAKI D. Biomedicines\[J\], 2018, 6(1): 18. \[20\]WANG P, PU Y, REN Y, et al. International Journal of Biological Macromolecules\[J\], 2022, 226: 813-822. \[21\]MA T, ZHAI X, HUANG Y, et al. Advanced Healthcare Materials\[J\], 2021, 10(13): 2100033. \[22\]CHANG R, ZOU Q L, ZHAO L Y, et al. Advanced Materials\[J\], 2022, 34(16): 2200139. \[23\]ZHOU Y, NIU B, ZHAO Y, et al. Journal of Controlled Release\[J\], 2021, 339: 335-349. \[24\]KORKMAZ E, BALMERT S C, SUMPTER T L, et al. Advanced Drug Delivery Reviews\[J\], 2021, 171: 164-186. \[25\]ZHAO H, WANG X, GENG Z, et al. Lab on a Chip\[J\], 2022, 22: 4521-4530. \[26\]YI X, WANG C, YU X, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials\[J\], 2020, 109: 911-920. \[27\]WANG F, ZHANG X, CHEN G, et al. Research (Wash D C)\[J\], 2020, 2020: 2760594. \[28\]ZHANG Y, FENG P, YU J, et al. Advanced Therapeutics\[J\], 2018, 1(3): 1800035. \[29\]YANG B, DONG Y, SHEN Y, et al. Bioactive Materials\[J\], 2021, 6: 2400-2411. \[30\]PEI P, YANG F, LIU J, et al. Biomaterials Science\[J\], 2018, 6: 1414-1423. \[31\]ABDELAZIM H, TEKKO I A, ALI A, et al. Journal of Controlled Release\[J\], 2022, 348: 849-869. \[32\]KOLDE G, ROWE E, MEFFERT H. British Journal of Dermatology\[J\], 2013, 168: 450-452. \[33\]FU J J, LI C W, LIU Y, et al. Journal of Biomedical Nanotechnology\[J\], 2020, 18(1): 146. \[34\]LIU P, FU Y, WEI F, et al. Advanced Science\[J\], 2022, 9(25): 2202591. \[35\]SHAN Y, TAN B, ZHANG M, et al. Journal of Nanobiotechnology\[J\], 2022, 20: 238. \[36\]HUANG Y, LAI H, JIANG J, et al. Asian Journal of Pharmaceutical Sciences\[J\], 2022, 17: 679-696. \[37\]LEI Q, HE D, DING L, et al. Advanced Functional Materials\[J\], 2022, 32(22): 2113269. \[38\]PENG T, HUANG Y, FENG X, et al. Advanced Therapeutics\[J\], 2020, 3(6): 1900190. \[39\]CHEN S X, MA M, XUE F, et al. Journal of Controlled Release\[J\], 2020, 324: 218-227. \[40\]HAO Y, CHEN Y, HE X, et al. Bioactive Materials\[J\], 2020, 5: 542-552. \[41\]QIN W, QUAN G, SUN Y, et al. Theranostics\[J\], 2020, 10: 8179-8196. \[42\]CHEN Y, YANG Y, XIAN Y, et al. ACS Applied Materials & Interfaces\[J\], 2020, 12(1): 352-360. \[43\]LI W, WANG X, WANG J, et al. Biomacromolecules\[J\], 2019, 20: 401-411. \[44\]ZHAO X, LI X, ZHANG P, et al. Journal of Controlled Release\[J\], 2018, 286: 201-209. \[45\]PENG T, HUANG Y, FENG X, et al. Acta Pharmaceutica Sinica B\[J\], 2021, 11: 3297-3309. \[46\]HAMDAN I M N, TEKKO I A, BELL S E J. European Journal of Pharmaceutics and Biopharmaceutics\[J\], 2022, 179: 105-117. \[47\]MOREIRA A F, RODRIGUES C F, JACINTO T A, et al. International Journal of Pharmaceutics\[J\], 2020, 576: 118907. \[48\]AKHTER F, MANRIQUEBEDOYA S, MOREAU C, et al. Pharmaceutics\[J\], 2021, 13(12): 2133. \[49\]WU Y K, CHENG N C, CHENG C M. Trends in biotechnology\[J\], 2019, 37(5): 505-517. \[50\]ZHANG X, CHEN G, LIU Y, et al. ACS Nano\[J\], 2020, 14(5): 5901-5908. \[51\]SUN L, FAN L, BIAN F, et al. Research\[J\], 2021, 2021: 9838490. \[52\]SHAO Y, DONG K, LU X, et al. ACS Applied Materials & Interfaces\[J\], 2022, 14(51): 56525-56534. \[53\]SUN L, WANG Y, FAN L, et al. Chemical Engineering Journal\[J\], 2023, 457: 141206. \[54\]MA C J, HE Y, JIN X, et al. Biomaterials Advances\[J\], 2022, 134: 112555. \[55\]YAO S, WANG Y, CHI J, et al. Advanced Science\[J\], 2022, 9(3): 2103449. \[56\]CAFFARELSALVADOR E, KEARNEY M C, MAIRS R, et al. Pharmaceutics\[J\], 2015, 7(4): 397-412. \[57\]LEI X, LI M, WANG C, et al. International Journal of Biological Macromolecules\[J\], 2022, 217: 55-65. \[58\]HE R, DING C, LUO Y, et al. Advanced Materials\[J\], 2021, 33(44): 2104410. \[59\]ZHU W, MEI J, ZHANG X, et al. Advanced Materials\[J\], 2022, 34: 2207961. \[60\]WANG J, LI Y, HAN X, et al. ACS Biomaterials Science & Engineering\[J\], 2021, 7: 1438-1449. \[61\]YU X, ZHAO J, FAN D. Chemical Engineering Journal\[J\], 2022, 437:135475. \[62\]SHIH Y H, LIU D, CHEN Y C, et al. Pharmaceutics\[J\], 2021, 13(6): 809. \[63\]WEN T, LIN Z, ZHAO Y, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13(41): 48433-48448. \[64\]TSOU Y H, WANG B, HO W, et al. Advanced Healthcare Materials\[J\], 2019, 8(12): 1801184. \[65\]XUE S W, LEE D, BERRY D C. Frontiers in Endocrinology\[J\], 2023, 14: 1150059. \[66\]PENG H, ZHOU Y, ZHANG C, et al. Journal of Materials Chemistry B\[J\], 2021, 9: 421-427. \[67\]ZHANG C, JIA S, HUANG J, et al. Journal of Materials Chemistry B\[J\], 2021, 9: 8014-8020. \[68\]FAN Z, WEI Y, YIN Z, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13(34): 40278-40289. \[69\]HUANG L, FANG H, ZHANG T, et al. Bioactive Materials\[J\], 2023, 23: 526-538. \[70\]WU D, SHOU X, YU Y, et al. Advanced Functional Materials\[J\], 2022, 32(47): 2205847. \[71\]LIU L, WANG Q, LIAO H, et al. Journal of Materials Chemistry B\[J\], 2021, 9: 7725-7733. \[72\]LIU D, ZHANG Y, JIANG G, et al. ACS Biomaterials Science & Engineering\[J\], 2018, 4: 1687-1695. \[73\]HU W, SU Y W, JIANG Y K, et al. Chinese Journal of Polymer Science\[J\], 2021, 40: 157-165. \[74\]FAN L, ZHANG X, NIE M, et al. Advanced Functional Materials\[J\], 2021, 32(13): 2110746. \[75\]CARCAMOMARTINEZ A, MALLON B, DOMINGUEZROBLES J, et al. Journal of Materials Chemistry B\[J\], 2020, 8: 5425-5433.

备注/Memo

备注/Memo:
收稿日期:2023-04-19修回日期:2023-07-18 基金项目:国家自然科学基金项目(52073230);陕西省杰出青 年基金项目(2023-JC-JQ-32);西北工业大学萌创 基金项目 第一作者:韩淼,女,2000年生,硕士研究生 通讯作者:李鹏,男,1983年生,教授,博士生导师, Email:iampli@nwpu.edu.cn
更新日期/Last Update: 2023-07-03