[1]葛洁洁,徐雅欣,李文亚.冷喷涂Ti/WC复合涂层的组织与耐磨性研究[J].中国材料进展,2024,43(02):096-101.[doi:10.7502/j.issn.1674-3962.202307017]
 GE Jiejie,XU Yaxin,LI Wenya.Study on the Microstructure and Wear Properties of Cold Sprayed Ti/WC Composite Coatings[J].MATERIALS CHINA,2024,43(02):096-101.[doi:10.7502/j.issn.1674-3962.202307017]
点击复制

冷喷涂Ti/WC复合涂层的组织与耐磨性研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第02期
页码:
096-101
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Study on the Microstructure and Wear Properties of Cold Sprayed Ti/WC Composite Coatings
文章编号:
1674-3962(2024)02-0096-06
作者:
葛洁洁徐雅欣李文亚
西北工业大学 摩擦焊接技术陕西省重点实验室,陕西 西安 710072
Author(s):
GE Jiejie XU Yaxin LI Wenya
Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
钛合金冷喷涂复合涂层WC摩擦磨损
Keywords:
titanium alloy cold spraying composite coating WC wear
分类号:
TG174.4
DOI:
10.7502/j.issn.1674-3962.202307017
文献标志码:
A
摘要:
为解决钛及其合金磨损性能较差的问题,采用高压冷喷涂技术在Ti6Al4V合金基体上沉积了2种不同成分的Ti/WC复合涂层,通过室温下的干滑动摩擦磨损试验分别测试了基体与复合涂层的摩擦性能,并采用扫描电镜及拉曼光谱对磨损表面进行了观察与表征。结果表明,与Ti6Al4V基体的磨损率(4.06×10-7 mm3/(N·m))相比,复合涂层的磨损率降低了一个数量级,表现出优异的耐磨性。此外,涂层内WC含量的增加,提高了涂层的显微硬度,涂层的耐磨性也随之提升。在磨损轨迹表面,由TiO2、WO3以及WC碎片构成的摩擦膜能够有效避免磨球与涂层表面的直接接触,从而降低磨损程度。因此,冷喷涂Ti/WC复合涂层在钛合金磨损防护方面具有一定的应用前景。
Abstract:
To solve the problem of poor wear performance of titanium and its alloys, two Ti/WC composite coatings with different compositions were deposited on Ti6Al4V alloy substrate using high-pressure cold spraying. The tribological properties of the substrate and the coatings were tested by dry sliding friction wear test at room temperature, and the wear surfaces were observed and characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The results showed that the wear rates of the composite coatings are reduced by one order of magnitude compared with that of the Ti6Al4V matrix (4.06×10-7 mm3/(N·m)), exhibiting excellent wear resistance. In addition, the increase of WC content in the coating improves the microhardness and the wear resistance of the coating. On the surface of the wear track, the friction film composed of TiO2, WO3 and WC fragments can effectively avoid the direct contact between the grinding ball and the coating, thus reducing the degree of wear. Therefore, the cold-sprayed Ti/WC composite coating has certain application prospects in titanium alloy wear protection.

参考文献/References:

References
[1] ANENE F,JAAFAR C A,ZAINOL I,et al.Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci[J],2020,1–14.https://doi.org/10.1177/0954406220967694.
[2] SIRVENT P,GARRIDO M A,LOZANO-PEREZ S,et al.Surf. Coat. Technol[J],2020,382:125152.https://doi.org/10.1016/j.surfcoat.2019.125152.
[3] BLAU P J,JOLLY B C,QU J,et al.Wear[J],2007,263:1202-1211.https://doi.org/10.1016/j.wear.2006.12.015.
[4] BIAN Y M,CAO L,ZENG D H,et al.Surf. Coat. Technol[J],2023,456:129256.https://doi.org/10.1016/j.surfcoat.2023.129256.
[5] BAHIRAEI M,MAZAHERI Y,SHEIKHI M,et al.J. Alloys Compd[J],2020,834:155080.https://doi.org/10.1016/j.jallcom.2020.155080.
[6] 汪昊,李庆达,刘爱莲,等.材料保护[J],2023,56:124-134.https://doi.org/10.16577/j.issn.1001-1560.2023.0068.
[7] WANG S,LIAO Z H,LIU Y H,et al.Surf. Coat. Technol[J],2014,252:64-73.https://doi.org/10.1016/j.surfcoat.2014.05.008.
[8] FU Y,BATCHELOR A W.Wear[J],1998,214:83-90.https://doi.org/10.1016/S0043-1648(97)00204-4.
[9] 汪广平,陈涛,徐志鹏,等.金属加工(冷加工)[J],2023,No.864:1-8.https://kns.cnki.net/kcms2/article/abstract?v=uGgCwAjnz5HYQh-wtw6SsRc9484kaBgB2wEC7X_9QeA9Y3XmMjevA9z-bkUS8OG2Kxw1RRRilG99Mu6yPWGfSNVn-H27qEksc0eIRLQXdp7Djz2AJL-dGaEZ1kgbTYxa&uniplatform=NZKPT&language=CHS.
[10] 王吉强,崔新宇, 熊天英.中国表面工程[J],2020,33:51-67.https://kns.cnki.net/kcms/detail/detail.aspx?FileName=BMGC202004005&DbName=DKFX2020.
[11] 黄春杰,殷硕,李文亚,等.表面技术[J],2021,50:1-23.https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.07.001.
[12] 葛益,雒晓涛, 李长久.表面技术[J],2020,49:60-67+89.https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.07.008.
[13] CHENG R H,LUO X T,HUANG G S,et al.J Mater Process Technol[J],2021,296:117231.https://doi.org/10.1016/j.jmatprotec.2021.117231.
[14] CUI L,MA B,FENG S Q,et al.Ordnance Mater. Sci. Eng[J],2015,38:115-120 (in Chinese).https://doi.org/10.14024/j.cnki.1004-244x.2015.01.026..
[15] CAVALIERE P,SILVELLO A.J. Therm. Spray Technol[J],2015,24:1506-1512.https://doi.org/10.1007/s11666-015-0331-2.
[16] KHUN N W,LI R T,LOKE K,et al.Tribol. Trans[J],2015,58:616-624.https://doi.org/10.1080/10402004.2014.991860.
[17] FERNANDEZ R,JODOIN B.J. Therm. Spray Technol[J],2019,28:737-755.https://doi.org/10.1007/s11666-019-00845-5.
[18] HE L W,HASSANI M.J. Therm. Spray Technol[J],2020,29:1565-1608.https://doi.org/10.1007/s11666-020-01091-w.
[19] LI W Y,CAO C C,YIN S.Prog. Mater. Sci[J],2020,110:100633.https://doi.org/10.1016/j.pmatsci.2019.100633.
[20] FERNANDEZ R,JODOIN B.J. Therm. Spray Technol[J],2018,27:603-623.https://doi.org/10.1007/s11666-018-0702-6.
[21] ALIDOKHT S A,MUNAGALA V N V,CHROMIK R R.Tribol. Lett[J],2017,65:114.https://doi.org/10.1007/s11249-017-0899-4.
[22] MUNAGALA V N V,CHROMIK R R.Surf. Coat. Technol[J],2021,411:126974.https://doi.org/10.1016/j.surfcoat.2021.126974.
[23] KUMAR A,SINGH H,KANT R.Met. Mater. Int[J],2023,29:1669-1683.https://doi.org/10.1007/s12540-022-01323-4.
[24] KUSINSKI J,KAC S,SZWACHTA G,et al.Wear Resistance of the Ti/TiC Coatings Deposited by Means of Supersonic Cold Gas Spray Technique[C].TMS 2014 Supplemental Proceedings,2014 of Conference:1173-1180.https://doi.org/10.1007/978-3-319-48237-8_140.
[25] TORGERSON T B,HARRIS M D,ALIDOKHT S A,et al.Surf. Coat. Technol[J],2018,350:136-145.https://doi.org/10.1016/j.surfcoat.2018.05.090.
[26] ALIDOKHT S A,CHROMIK R R.Wear[J],2021,477:203792.https://doi.org/10.1016/j.wear.2021.203792.
[27] CHEN S N,LIAO B,CHEN L,et al.Acta Phys Sin-ch Ed[J],2020,69:107202-1-107202-11.https://doi.org/10.7498/aps.69.20200012.

备注/Memo

备注/Memo:
收稿日期:2023-07-19修回日期:2023-11-20 基金项目:国家重点研发计划项目(2021YFB3200500) 第一作者:葛洁洁,女,1998年生,硕士研究生 通讯作者:徐雅欣,女,1985年生,副教授,博士生导师, Email:xu.yaxin@nwpu.edu.cn
更新日期/Last Update: 2024-01-29