[1]闫姝璇,刘洪博,陈湘萍,等.退役NCM333正极材料热化学还原转化过程研究[J].中国材料进展,2024,43(05):030-39.
 YAN Shuxuan,LIU Hongbo,CHEN Xiangping,et al.Thermochemically Regulated Conversion Recovery Processes of NCM333 in spent Lithium-ion Batteries[J].MATERIALS CHINA,2024,43(05):030-39.
点击复制

退役NCM333正极材料热化学还原转化过程研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第05期
页码:
030-39
栏目:
出版日期:
2024-05-30

文章信息/Info

Title:
Thermochemically Regulated Conversion Recovery Processes of NCM333 in spent Lithium-ion Batteries
作者:
闫姝璇刘洪博陈湘萍杨鹰周涛
1. 中南大学化学化工学院,湖南 长沙 410000 2. 湖南师范大学化学化工学院,湖南 长沙 410000
Author(s):
YAN Shuxuan LIU Hongbo CHEN Xiangping YANG Ying ZHOU Tao
1.College of Chemistry and Chemical Engineering, Central South University,Changsha 410000,China 2.College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410000,China
关键词:
退役锂离子电池生物质裂解热化学过程有价金属选择性分离
Keywords:
Spent lithium-ion batteries Biomass pyrolysis Thermochemical process Valuable metal Selective separation
分类号:
TQ09
文献标志码:
A
摘要:
锂离子电池的日前爆发式增长将在未来的3~5年内面临大量的“退役”问题。退役锂离子电池尤其是退役正极材料的高效、可持续回收的利用,是实现新能源产业碳达峰和碳中和的目标和关键。本文主要研究了玉米秸秆对退役正极材料LiNi0.5Co0.3Mn0.3O2中有价金属的热化学还原过程,通过调控转化高价金属,选择性回收金属盐及单质,过程中避免传统过程中化学试剂的添加,同时利用退役正极材料中的过渡金属特性,对玉米秸秆进行催化重整产气。反应过程通过X-射线衍射仪、X射线光电子能谱等仪器分析热解后的正极材料和玉米秸秆,结果表明玉米秸秆热解、气化产生的还原性气体和生物碳破坏了正极材料LiNi0.3Co0.3Mn0.3O2中的高价金属-氧键,降低Ni、Co和Mn的金属价态,同时将Li转化为Li2CO3。不同的热解温度得到了不同的热解产物,较高的温度更易得到Ni-Co合金及MnO。热解还原过程中正极材料中的过渡金属对玉米秸秆热解来说是良好的催化剂,可以降低热解反应的所需温度,提升碳热反应的可能性,从而实现“废物+废物=资源”的目的。该工艺可以在不外加还原剂的情况下可以高效、高选择性和无污染的梯度回收有价金属,不仅提供了一条绿色可持续发展的退役锂离子电池回收路径,也为生物质的催化重整过程提供了一种成本低廉的催化剂的选择。
Abstract:
The recent explosive growth of lithium-ion batteries will face a large number of "decommissioning" problems in the next 3 to 5 years. The efficient and sustainable recycling of decommissioned lithium-ion batteries, especially waste cathode materials, is the key to achieving the goal of carbon peak and carbon neutrality in the new energy industry. This paper mainly studies the thermochemical reduction process of valuable metals in waste cathode materials LiNi0.3Co0.3Mn0.3O2 by corn stalks. Through regulating and transforming high-valence metals, selective recovery of metal salts and elemental substances avoids the addition of reducing agents in the traditional process and utilizes the transition metal characteristics in waste cathode materials for catalytic reforming of corn stalk to produce gas. During the reaction process, X-ray diffraction and X-ray photoelectron spectroscopy were used to analyze the cathode material and corn straw after pyrolysis. It was found that the reducing gas and biological carbon generated by the pyrolysis and gasification of corn straw destroyed the high-value metal-oxygen bond in the cathode material LiNi0.3Co0.3Mn0.3O2, and reduced the metal valence states of Ni, Co and Mn. It also converts Li to Li2CO3. Different pyrolysis products are obtained at different pyrolysis temperatures, and Ni-Co alloy and MnO are easier to be obtained at higher temperatures. In the process of pyrolysis and reduction, the transition metal in the positive electrode material is a good catalyst for the pyrolysis of corn straw, which can reduce the required temperature of the pyrolysis reaction, improve the possibility of carbothermal reaction, and regulate the gas composition generated by pyrolysis, so as to achieve the purpose of "waste + waste = resources". The process can recover valuable metals in an efficient, highly selective and pollution-free gradient without the addition of reducing agents, which not only provides a green and sustainable recycling path for waste lithium-ion batteries, but also provides a low-cost catalyst for the catalytic reforming process of biomass.
更新日期/Last Update: 2024-04-28